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SUMMARY

The geodetic use of rockets, artificial satellites, and the

moon is reviewed. The discussion covers in turn dynamics,

geometry, observational techniques, comparison with terrestrial

geodesy, and geophysical implications.
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a

a

a e

(An m, Bn m)

A Earth-moon distance inversely proportionate to mean lunar parallax:

= aJA (Paragraph 6, Section I; Paragraph 7, Section I)

A Cross sectional area of a satellite (Paragraph 8, Section I; Paragraph 4,

Section II; Section III)

Semimajor axis of Keplerian orbit (Section I; Section II)

Aperture of a telescope (Section III)

Mean equatorial radius of earth

Coefficients of Prim(Sin ¢) (COS re,k, sin m)_) in spherical harmonic

development of gravity anomalies

b Position vector (b 1, b2, b3) in coordinates referred to the axis of an

observing instrument

b Coordinates (v, 5 ) measured on a photo plate (Section II)

b Radius of a satellite (Section l/I)

1_
2

c Shape parametec nell 2 of ellipsoidal coordinates (Section I; Section l/I;

Section V)

c Velocity of light (Paragraph 7, Section I; Section HI)

CD Drag coefficient, a function of the shape of a body

C Coefficient matrix of partial derivatives for differential corrections

C Moment of inertia of the earth about the polar axis (Section VI)

E Eccentric anomaly of Keplerian orbit (Section I; Section II)

E Energy density (dimension EL-2 = MT" 2 ) (Section lII)

E i General notation for any Keplerian orbit element

e Vector (M, a, e, J ,oJ, _) of Keplerian orbit elements



F

Fnmp(i)

G

Gnpq(e)

e Eccentricity of a Keplerian orbit or an earth ellipsoid

F Hamiltonian in astronomic sign convention (negative potential; dimen-

sion EM"1 -- L2T -2)

Force (dimension MLT "2)

Inclination function in coefficient of terms containing (n - 2p)_ in argu-

ment in the disturbing function R.m

f True anomaly of Keplerian orbit (Section I)

f Focal length of telescope (Section II; Paragraph 2, Section III)

f Frequency expressed in cycles, or periods, per unit time: _/2_ (Para-

graph 3, Section III)

f Flattening of earth ellipsoid (Section V; Section VI)

f Vector of residuals in matrix expression of observation and condition

equations

Delaunay canonical variable, I_a (1 - e 2)1 -_

Eccentricity function in coefficient of term containing (n- 2p + q) M in

argument in disturbing function Rn_

g Delaunay canonical variable _, argument of perigee

ge Mean gravity at earth's equator

H Hamiltonian in physical sign convention, equal to -F (Equations 22 and

23 only)

h

h

i

I

Delaunay canonical variable

Paragraph 5, Section I)

1

co,i ,par ra h2,Section

Scale height, - hp/(_p/'_h) (Paragraph 8, Section I)

Delaunay canonical variable _, longitude of node from equinox (Equa-

tions 26 and 28) and page 23
1

r2f = I/_a(l-e2)l-_ (Equation 5) and page 27Constant of areas

Altitude above earth's surface (Paragraph 8, Section I; Section III)

Inclination

Unit Matrix
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_n' Jnm

! Luminous intensity, energy per steradian per unit time (dimension

ET -1 = L 2 MT-3)

- n n+l , s cos m>_1 in spheri-Coefficients of (_ae/r ) [Pn( sin ¢) P.m( _n ¢)

cal harmonic development of potential

n n+l
K._ Coefficient of - (pae/r ) Pnm(Sin ¢) sin m_ in potential

k Gaussian constant: 6.664 x 10 "s cgs. (dimension LSM'IT "2) (Section

I; Section V)

k, h Love's numbers: ratios of tidal potential to disturbing potential and

actual tide height to equilibrium height, respectively (page 43; Sec-

tion V)

k Summation index in Rnm : (n - m)/2. n- m eve_l; (n- m- 1)/2, n- m odd

(pages 35 through 36)

L

M

Delaunay canonical variable

Delaunay canonical variable:

1_

M, mean anomaly

Position vector (_l, £2, _3) in coordinates referred to a local vertical

Mass of an astronomical body (Equation 1; pages 39 through 40; Section

V; Section VI)

M Mean anomaly of a Keplerian orbit (Paragraph 2, Section I; Paragraph

3, Section I; Paragraph 5, Section I; pages 35 through 37; Paragraph 8,

Section I; Section II)

M Coefficient matrLx of partial derivatives of observations with respect

to parameters for differential corrections

m Mass of a small body: artificial satellite, electron, etc. (Paragraph 2,

Section I; Paragr:tph 8, Section I; Section II; Section HI)

m Ratio of disturbing body mean motion to its differences from satellite

mean motion: n*/(n - n*) (Paragraph 6, Section I)

m Ratio centrifugal force to gravity at equator (0)2a_/u. (Section V;

Section VI)

m Order index or secondary wave number of spherical harmonic; 0 < m< n

(Paragraph 5, Section I; Paragraph 7, Section I; Section II; Section V;

Section VI)

n Degree index or primary wave number of spherical harmonic (Paragraph

5, Section I; Paragraph 7, Section I; Section II; Section V; Section VI)
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F

r,lrt

s

S,S

n Mean motion in Keplerian orbit (Section I;Section II)

n Unit vector normal to a surface or a line (inosculating plane)

N Electron density

N Observation matrix of partial derivatives of observed quantities with

respect to vector components

n2 Acceleration in mean motion, _/n

0 Order of magnitude

Pnm Associated Legendre function, Pnm(Sln _)

P Period, 27r/n, or cycle

p Vector of momentum, .or action,canonical variables; for example, L,G,H

(Section I)

p Position vector (pl,P2,P3) in coordinates referred to observer-

satelliteline (Section II)

q Position vector (ql,q2) in orbital plane, referred to line of apsides

(Section If)

q Vector of position, or angle, canonical variables, for example, l,g,h

(Section I)

I{ Radius of curvature (Section HI)

I_ Disturbing function (Section I;Section II)

Rnm Disturbing function due to anomalous gravity term

- /z Pnm( sin qb) (Jnm cos mk + Knm sin ink)

Rotation matrix for rotation about axis i counterclockwise through

angle

Position vector, without specification of coordinate axis directions

Range, or straight line distance

Distance along a curved line

Energy flux (dimension EL-2 T- 1 = MT-3) (Paragraph 8, Section I; Sec-

tion III)
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Snmpq (_, M, _, 0)

s Generating or determining function of a canonical transformation (Para-

graph 2, Section I; Paragraph 5, Section I)

Factor in term with coefficients -p.a:(J,,m, K.m ) and containing argu-
X $

merit [(n- 2p) w + (n - 2p + q)M + rn(_- 8)] in "the disturbing function R m

T Kinetic energy

t Time

t Unit vector tangential to a line

U Force function in astronomical sign convention, negative of potential:

-V (dimension L2T -2)

u Position vector (u,v, w) or (u 1, u 2, u3) in earth-fixed geodetic coor-

dinates, referred to polar axis and Greenwich meridian

V Potential, in physical sign convention (dimension L 2 T" 2)

v Velocity, I,;! (Paragraph 2, Section I; Section HI)

v Polar angle measured in orbital plane from a fixed departure point

(Paragraph 5, Section I)

W Covariance matrix

x Position vector (x, y,z) or (x 1, x 2, x3) in inertial coordinates, referred

to polar axis and vernal equinox

y Vector of corrections to observations in least squares adjustment

z Vector of corrections to parameters in least squares adjustment

z Zenith angle (Paragraph 2, Section III)

z Normalized altitude (h- ho)/H (Paragraph 3, Section HI)

a Right ascension

/3 Solar effect on mean lunar distance (Paragraph 6, Section I)

/3 Vertical gradient of scale height, _Hc/_h (Paragraph 8, Section I)

y Sine of half lhe inclination, sin (i/2)

$ Declination

Tide height
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OA
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General Notation

T, S, D

Greenwich sidereal time

Reflective efficiency or albedo

Longitude, counterclockwise from Greenwich meridian (Section I; Sec-

tion II; Section V)

Wavelength of light (Paragraph 2, Section III)

Gaussian constant times mass: kM (dimension L3T -2) (Section I; Sec-

tion II; Section V; Section VI)

Refractive index (Section HI)

Perigee subscript

Density (Paragraph 8, Section I; Section HI)

Ellipsoidal coordinates (Section I; Section III; Section V)

Phase angle

Latitude

Longitude, from vernal equinox, of node of Keplerian orbit

Argument, from node, of perigee of Keplerian orbit (Section I; Sec-

tion If)

Frequency in radians per unit time: 2 _ f (Section III)

' " Primes denote parameters or coordinates of an intermediate orbit: for

example, a', e', F', p', x'

* An asterisk denotes parameters or coordinates of a disturbing body,

such as the sun or moon: for example, a °, x*, _*

o A zero subscript denotes quantities evaluated at a reference time

(epoch) or reference coordinate: for example, a 0, %, h0, u0

" Overdots denote total derivatives with respect to time: for example,

Overbars denote mean values with respect to a certain duration of

time: for example, x, x'

These subscripts denote coordinates with origins respectively on the

earth's surface, at a satellite, and at the arbitrary origin of a geodetic

datum
X
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INTRODUCTION

We define celestial geodesy to be the use of extraterrestrial objects close enough

that their directions are significant functions of position on the earth to accomplish the

principal objectives of geodesy: to determine the external gravitational field and form

of the earth (including variations in both space and time), and to determine the positions

of points with respect to an earth-fixed reference system. In this review extraterrestrial

is more precisely defined as being of too great an altitude to be supported by the atmos-

phere, say, above 40 kilometers; and an outer limit on the zone of interest is set as the

distance of the moon, about 400,000 kilometers.

The scope of this review is primarily the exploitation of extraterrestrial objects for

the aforestated geodetic purposes. This approach still entails considerable attention to

the effects on the objects, and observations thereof, of the atmosphere, other astronomic

bodies, electromagnetic fields, etc., for the same reason that attention to atmospheric

refraction is required in conventional geodesy.

This review is divided into six sections. The first se¢:tion discusses the dynamics

of earth satellites proceeding from general principles to tim subject of principal geodetic

interest, the effects of the earth's gravitational field on their orbits, and thence to the

other physical effects most likely to interfere. The second section discusses the geo-

metrical considerations involved, including specification of satellite and orbital param-

eters and observational configuration for optimum results. The third and fourth sections

discuss observational techniques. The fifth section discusses comparison and combina-

tion of celestial and terrestrial results. The sixth section discusses the geophysical im-

plications of the geodetic data thus far obtained celestially.

The emphasis of this review is on the dynamical aspects, first because they lead

to the scientifically most interesting results and second because the most effective and

economic attainment of the geometric as well as the gravitational purposes will require

use of the orbits.

The most comprehensive analysis in celestial geodesy is that of Veis (Reference 1).

More general discussions are in References 2, 3 and 4. The recent treatise of Berroth

and Hofmann (Reference 5) is the most extensive discussion of lunar techniques.

This review was written in February 1961, and brought up to date in July 1961 to in-

corporate those developments of greatest interest to geodesy.
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SECTION I

ORBIT ANALYSIS

1. GENERAL DISCUSSION

Celestial mechanics is a branch of classical mechanics, a subject to which some of

the most competent mathematical minds have devoted considerable attention in the past

and in which even today advances are being made both in understanding of fundamental

principles and in techniques of application. Since the problem of greatest interest to

celestial geodesy, the close satellite of an oblate planet, is not one which has been of

practical interest to astronomers until recent years, and since the geodesist wants to

extract as much information as possible about the gravitational field from the orbits of

close satellites, close study of a modern text on the fundamental principles of classical

mechanics such as References 6, 7 or 8, is well worthwhile. The standard texts on celes-

tial mechanics (References 9, 10, 11, and 12) place less emphasis on mathematical prin-

ciples and more on astronomical techniques. None of these texts treat the close satellite

problem, but it is discussed considerably in the more recent texts (References 13, 14,

and 15). Of these texts, Plummer (Reference 9) and Brouwer and Clemence (Reference

15) appear to be the best combinations of clarity and comprehensiveness.

The geometric limits of interest imposed in the introduction define the dynamical

problem of celestial geodesy as that of a perturbed Keplerian orbit, that is, the elliptic

orbit of a particle of negligible mass in a central force field

Fr - - kMm (1)

r 2

with departures of an order not greater than 10-2 compared to the central force. Near

the inner limit of the zone of interest, the most important of the departures arise from

the noncentral terms in the earth's gravitational field and from the earth's atmosphere;

near the outer limit, from the sun and moon.

Some general principles and techniques are discussed before the particular subjects

of interest are investigated. The purposes of these techniques are two-fold: obtaining

the most precise and efficient solution and attaining a keener insight into the physical

nature of the phenomena. Modern computers have lessened the importance of the former

purpose, but not of the latter.



. GENERAL PRINCIPLES AND TECHNIQUES

Dynamical Principles

The dynamical situation of a satellite in orbit can be expressed at any instant by its

position vector (x,y, z) and velocity vector (£,9, _) referred to inertial space with

origin at the earth's center. These six parameters can be transformed to the six param-

eters of a Kepler ellipse with one focus at the origin: (a, e, i,_,_, f). The relationship

between these parameters and the earth-fixed coordinates (u,v,w) are shown in Figure 1.

In the angle _ + f : w is the argument of perigee, the angle from the ascending node

to perigee, the point of closest approach of the ellipse to the origin; and f is the true

anomaly, the angle from perigee to the satellite. Alternate ways of expressing the anom-

aly of the satellite are (Reference 9, pp. 23-24 and Reference 15, pp. 17-25): the eccen-

tric anomaly E related to f by

1
1 (1 - o_ 1 (2)

tan _ E = \1 + e] tan _- f

I

Z,W

E(

t
X

GST

U

Figure 1 - Orbit and Coordinate Systems
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and the mean anomaly M

M -- E- e ._in E. (3)

Equation 3 is known as Kepler's equation.

Further useful relations for elliptic motion (Reference 9, pp. 19-24), using the ab-

breviation tL for kM in Equation 1, are set forth in Equations 4 through 9.

The equation of energy is

The constant of areas (Kepler's second law) is

1

The mean motion (Kepler's third law) is

, _ 3 (6)
n = _l -- _z _ a 2

From Equations 3, 5, and 6:

[ r2 taM : - df = (1 - e cos E)dE (7)

a(1 - e 2)
r =: = a(1 - e cos E) (8)

1 + e cos f

1_ (1- e2) 2 dE
df l_ec_E

1

( 1 - e2) 5 d
dE = 1+ ecos f

(9)

A closed expression relating f and M is impossible; series expansions for this and

other relationships are given in the standard texts, for example, Reference 9, pp. 33-48

and Reference 15, pp. 71-81. Many formulas particularly applicable to satellites are

given in Reference 16.



Theelliptic motiondescribedin Equations2through9 results from themotionof a
particle of negligiblemassin thecentral field describedby Equation1. This central
force canbeexpressedasthenegativeof aderivativeof a scalarpotential. Thus,

1]

vtF r = -m Dr

#

V -_-

(10)

Equation 10 follows the sign convention of physics for V. In astronomy and geodesy

this sign convention is reversed and the negative of the potential, sometimes called the

force function, is used. Thus,

Fru -= /_mr--_r3U I

(11)

Hereafter, we shall always use V for the potential when following the physical con-

vention of Equation 10 and U for the force function when following the astronomic con-

vention of Equation 11.

The ellipse results from the solution of the equations of motion, in vectorial form,

r = (x,y,z) are

m_" : F :- mYV = mVU. (12)

All complications and developments of interest arise from the small departure R of

the potential from the form of Equation 10 or Equation 11

V = -_-RIr
U _+R

r

(13)

The most significant terms in R are:

(1) The earth's oblateness

2

_a e

R 2 = --- J2P2(sin ¢)
3

r

(14)
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where a e is the equatorial radius; .12 is the oblateness, or flattening, parameter (about

10-3); and P2(sin 4) is the Legendre Polynomial of secopd degree.

(2) The sun or moon (Reference 9, p. 254 and Reference 15, p. 308)

I , F* 1

1 ,. (15)
_" = *** lr-,-'l r'S

where the asterisked quantities refer to the disturbing body, sun or moon, in the earth-

centered coordinate system.

(3) The atmospheric drag which is derivable from a potential of velocity rather than

of position

Rd _ b(r) [}la (16)
3

from which drag forces Fd. i are obtained by derivatives with respect to velocity; thus,

:
_d,, = m\_) -._(r) _i1_1 (17)

The development of the effects of R2, R,, and 1_d [including definition of the function

b(r)] are taken up in paragraphs 5, 6, and 8 of this section, respectively. First dis-

cussed are some general principles and procedures to treat the equations of motion (Equation

1) with a potential of form of Equation 13, in particular to take advantage of the fact that

the motion departs slightly from that of the Kepler ellipse (Equations 2 through 9).

The kinetic energy is

m 2
T = 2_ ]rl (18)

The momentum is

_ 3T _ m_i. (19)
Pi 3} i
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Taking m -- 1 and qi = ri , Equation 19 becomes

_T
Pi =

?Pi

and from Equation 12 there is obtained

(20)

_'i : _i = - 3X. (21)

I

_a
b.a

¢91

¢91

If it is assumed Rd = 0, the Hamiltonian is defined as

H = T+V (22)

and the following canonical equations are obtained:

qi = 5H_H Pi = - _H_H (23)
?P i 5q i

The six first order differential equations (Equation 23) replace the three second

order differential equations (Equation 12).

In the astronomical sign convention, symbolize the negative of H by F. Then,

and

F = U- T (24)

5F _F
qi = bi -_Pi ' _qi (25)

There exist many sets of canonical variables p_, ql which can be used in Equations

23 or 25. The set most closely related to the Keplerian elements is that of Delaunay

(Reference 9, p. 152 and Reference 15, p. 290)

1

Pl = L = (#_a)5' ql = _ -- M

!

P2 : G : [_a(1-e2)] _ q2 : g = _

!
P3 = H = [_(1-e2_ 2 cos i , q3 = h =

(26)
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From Equations 4, 13, 18, 24, and 26

_2
F - +R.

2L 2

Another set of canonical variables useful when the eccentricity approaches zero

(g = _ loses definition) or the inclination approaches zero (h = _ loses definition) is

(Reference 15, p. 240):

(27)

L, -_4 g + h 1

G-L, g+h

H-G, h

(28)

Using Equations 26 and 27 to transform from canonical to Keplerian variables, and

defining n by Equation 6, the equations of motion in terms of the Keplerian elements are

obtained (Reference 9, p. 147 and Reference 15, p. 289):

na 3M

1

1- e 2 bR (l-e2) _" _R

na2e bM na2e _cJ

!

c_ : cos i bR + (l-e2) _ bR

1 3i na 2e be
na2(1 - e2} _ sin i

di cos i 3R 1 3R

dt = I b_ 1 3fl
na2(1-e2) 5 sin i ha2(1-e2) _ sin i

1 bi
na2(l-e2) i sin i

1 - e2 3R 2 bR
M = n

na2e be na 3a

(29)

Equations 29 are the simplest means of obtaining the first approximation to the ef-

fect of a disturbing function R on the orbital elements. Similar equations can be obtained

expressing the disturbing force in radial, transverse, and normal components (Reference

9, p. 151 and Reference 15, p. 301). However, to obtain the second approximation, as is

necessary for R2 in the case of the close satellite and for 1_ in the case of the distant

satellite, the algebra in proceeding from Equation 29 becomes exceedingly complex.



10

Hence,we return to the canonicalequations(Equation25), adheringto the astro-
nomical sign convention.

First, generalizethecanonicalequationsby addingonemoredimensioneachto p, q.
Thus,

_(F + q4) (30)P4 = t, q4 = - bt dt

which obey Equation 25, using F + q4 in place of F.

This generalization is analogous to transforming the expression for a surface from

the form z = f(x,y) to the form F(x,y,z) = 0; it is necessary to deal with (negative)

Hamiltonians F containing the time explicitly, and also desirable in that a more sym-

metrical manner of expression is conducive to improved insight.

If an orbit, called an intermediate orbit, can be found for which the solution of the

canonical equations (Equation 25) is known with coordinates (p', q') at any given time

close to the coordinates (p, q) of the actual orbit, then the solution of the actual orbit

can be expressed as that of the intermediate orbit plus a Taylor series development over

the small difference (p', q') _ (p, q). An orbit which is solvable is one for which the

Hamiltonian F' is a function of the momenta p[ only; then, from Equation 25

q;

bF'
= -- = 0

i

_qi

= constant

_ _F'
s

_Pi

J

= qio

- constant

+ constant (t-to)

(31)

To keep this intermediate orbit close to the actual orbit, its Hamiltonian F' must be

made equal to the constant part of the actual Hamiltonian F (or, if drag is being taken

into account, to the secularly changing part of F, which complication is ignored in this

section)

f_Up f)RpF'(p') = F(p,q)- _--dt = F- .]_-dt (32)

where Up = Rp is the part of the force function (negative potential) with an explicit peri-

odic dependence on time. The two Hamiltonians are developed in series, with the prin-

cipal term of F also a function only of momenta

!
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where the subscripts 0, 1, 2, . . . indicate the order of magnitude to which the parame-

ters characterizing the disturbing function R appear as factors in the terms, for exam-

ple, powers of J2 for R2, or powers of the ratio n*/n of solar to satellite mean motion

for R s. To make the procedure (Equations 31 through 33) possible we must select a co-

ordinate system in which the dominant part Fo of the Hamiltonian is expressible solely

in terms of momenta, such as the Delaunay coordinates (Equations 26 or 28), which yield

the form Equation 27 for F.

The problem now is: given the canonical variables (p', q') at any time, find the

variables (p, q) of the actual orbit at the same time; that is, make a canonical transfor-

mation

(p',q') _ (p,q) (34)

by a method which is as systematic and simple as possible.

The leading method (not the only one) originated by yon Zeipel (Reference 17), em-

ploys an arbitrary function S(p, q,p', q') called a generating function or a determining

function. Since by Equations 25, 31 and 33, two of the four sets p,q,p',q' are functions

of the other two, S is expressible as a function of only two of the sets. That most com-

monly used is

S = S(p',q) . (35)

The other two sets are then defined as

BS , BS
Pi = , qi : , • (30)

_qi _Pi

S is developed in a manner similar to F and F'

S : S O + S I + S 2 + ..... (37)

where the subscripts have thc_ same significance as in Equation 33. The term So must

have a form such that p_ = p_ and qi = q_ in the unperturbed case (that is, when

S 1=0, S 2 = 0, etc.)

ESo = qi Pi' (38)
i
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Substitute Equation 38 in Equation 37, differentiate with respect to ql and Pi, and sub-

stitute in Equation 36

, "_S I _S 2 , "_S I _S 2

Pi : Pi + _i + --_qi + ..... ' qi = qi _Pi' _Pi' (39)

# s

Making the substitutions from Equation 30 for P4 = P4 and q4 = q4 in Equation 39 and

comparing with Equation 32

F' = F-3_-

and (40)
_S _ f _Rp

_t J _ dt

Equation 40 is a form of the Hamilton-Jacobi equation; in other forms 0 appears on the

left and F is expressed as

!

_n

(from Equations 8, 24, and 36).

Develop F in Equation 33 in Taylor Series of (Pi - Pi), (ql - qi), where i = 1, 2, 3

and substitute for (Pi- Pl), (ql - q_) from Equation 39 (summing repeated indices i, j

from 1 to 3 in all products)

3S
F- _--_-=F0(P' )

_F o 3S1 3S1
-- + Fl(p',q' ) - __

+ 3Pi 3qi 3t

,
+ 3<,, ,
+ .....

t

+F 1

s

+ F 2

Jr .....

(41)

Equate terms of equal magnitude in F and F'. These equations determine the terms in

s; since F' can only contain the P'i, any qi terms in the development of F (including

those terms, if any, with an explicit dependence on time) must be accounted for by the s

terms. For example, split F 1 into two parts

FI = Fls(P') + Flp(ll',q') (42)
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and

F'I = F1s(p,), (43)

_)$I _ FIp(P',q')

_q_ _Fo/_,_ (44)

For the ist order term in Pi , _Sl/_qi from Equation 44 is used directly in Equation 39;

for the 1st order term in qi , Equation 44 is integrated with respect to qi and then dif-

ferentiated with respect to p_ for use in Equation 39. These derivatives

are also used in the 2nd order term of Equation 41 to evaluate $2, F_ for the second

approximations, and so forth. The difficult problem is usually finding

which are integrable.

The foregoing development has attempted to bring out those features of orbital theory

which help the most to understand the principal methods applied to satellite orbits. How-

ever, classical dynamics is impressive for the many different ingenious ways of treating

the same problems, and even for the different interpretations of the same mathematics:

for example, in the foregoing treatment, we have considered the canonical transformation

( p ', q' ) - ( p, q) as shifting from one point to another; this transformation may also be

considered as holding the point fixed and changing the coordinate systems. The canonical

equations (Equation 2_) and the generating function S (Equation 35) are both special cases

of more general forms. The independent variable of the canonical equations is not neces-

sarily time; any arbitrary parameter w may be used for which dw/dt is known.
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Thegeneratingfunction is one of the general category of action integrals

A : ;pidqi (45)

in which P4, q4 defined by Equation 30 are included. Thus, for example, Hamilton's

principle states that for integration from given starting coordinates over any time inter-

val a particle will move so that A is stationary--that is, for any small arbitrary variation

of the path of integration SA = 0 --from which the equations of motion (Equation 12) can be

derived. Also, A is equal to the integral of the Lagrangian L = T + U with respect to

time over the same interval. For these and other methods, see Reference 6, pp. 1-39,

215-317, Reference 8, pp. 98-197, Reference 9, pp. 129-157, 177-206, Reference 15, pp.

273-306, 530-562, and Reference 18.

Characteristics of Methods of Solution

Taking into account the considerations discussed above, the following steps must be

accomplished, either implicitly or explicitly, in solving any satellite problem (not neces-

sarily in the precise sequence given):

• selection of a coordinate system

• selection of the independent variable

• development of the disturbing function in terms of the selected coordinate

system and independent variable

• expression of the equations of motion in terms of the coordinate system and

independent variable

• selection of an intermediate orbit, or, alternatively, solution of the principal

part of the equations of motion

• definition of the constants of integration

• development and integration of the equations of motion in a manner suitable

for their solution for the position and/or velocity at any time.

As an aid to later comparing the different solutions of the satellite problem, the fol-

lowing is an attempt to describe the principal methods of accomplishing each of these

steps:
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Coordinate system

Z

The logical choice for an origin is the center of mass of the earth; for the lunar

problem, the effect of the appreciable mass of the moon on the center of gravity of the

system is taken care of by a simple factor applied to the force function referred to the

earth's center (Reference 9, pp. 254-257, Reference 15, pp. 310-311, and Reference 19,

pp. 2-8).

One coordinate plane is logically determined either by the principal disturbing

function (the ecliptic for Rs, the equator for R2) or by the disturbed body (the plane of

the intermediate orbit), with the axis directions in the plane determined by an arbitrary

fixed point (the vernal equinox for the ecliptic or the equator, the ascending node or a

departure point in the orbital plane) or rotating in a manner determined by the principal

disturbing function.

Types of coordinates which have been employed include the rectangular, spherical,

and ellipsoidal coordinates as well as the Keplerian and canonical orbit elements.

Independent variable

As pointed out (page 13), time can be replaced by any arbitrary parameter w for

which dw/dt is known. Some theories substitute the true anomaly f or the eccentric

anomaly E in order to retain closed expressions for the disturbing function and its

effects for each order of approximation; as mentioned (page 5), a closed expression

relating f and M or t is impossible while Kepler's equation relating M and E is

transcendental in the latter. In any theory using one of these parameters in place of

time, care must be taken to distinguish the parameter when it appears as the independent

variable from when it appears as a coordinate.

Development of the disturbing function

For close satellites, it quicMy becomes apparent that an analytical development of

the earth's potential in spherical or ellipsoidal harmonics is preferable even for numeri-

cal integration, due to the double attenuating effects of extrapolation to altitude and

integration of the equations of motion. Transformation to orbital referred coordinates

is straightforward, though tedious; see pages 22 and 35. The development of the lunar

or solar perturbation is a more complex matter, since two sets of periodicities are

involved; see pages 30 and 32.

Equations of motion

The form of the equations is most strongly influenced by the choice of the coordinate

system and intermediate orbit. Changes from the familiar inertial rectangular or

spherical coordinate form may occur by use of rotating reference axes, in which coriolis
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andcentrifugalforce terms occur;or by separationof effectsin theorbital planefrom
effectsontheorbital plane;or by useof anauxiliary functionsuchas atypeof action
integral (Equation45);or bytransformationto anequationin terms of small departures
from theintermediateorbit.

Intermediate orbit

Intermediate orbits can be characterized as of two types: dynamical intermediaries

which are defined by the terms in the potential (or force function) taken into account in

the exactly solvable orbit, such as Equation 31; and geometrical intermediaries which

are specified to have certain parameters and rates of change thereof without an orbit of

these properties necessarily being derivable from any possible potential. A method of

solution may have more than one intermediary, each characterizing a different stage of

the solution: separating short from long period variations, or variations in the orbital

plane from variations of the plane.

Constants of integration

The most concise expression of the orbit in any theory are the six independent

constants of integration: usually three momentum constants Pio and three position

constants qio at the epoch t o (a particular instant of time). The easiest to visualize

are the momentum and position of the actual orbit at epoch, expressed either in rectan-

gular coordinates or osculating Keplerian elements. However, in mathematical practice

it is much more convenient to define the constant in terms of the intermediate orbit, since

its parameters are either constant or less variable than those of the actual orbit. The

obvious choices mathematically are the constant parts of the momentum coordinates Pio

and the secularly varying part of the position coordinates at the epoch qio. However, in

many theories the momentum coordinates are defined so that they are readily deducible

from the observations of the position coordinates: the semimajor axis a o (or its

canonical equivalent L) is defined in terms of the mean motion by Equation 6, or a

modification of Equation 6; the eccentricity e ° (or 6) in terms of the coefficient of the

sin E or sin f periodic variation of the mean longitude (_ + _ + M) or mean anomaly,

as, for example, in Equation 3; and the inclination i o in terms of the coefficient of the

sin (w + f) or similar variation in the sine of the declination or latitude. From the orbit-

meridian-equator right spherical triangle in Figure 1 there is obtained:

sin ¢ : sin i .sin(w+f) . (46)

In this review the six constants of integration have been defined at an arbitrary time

t o . However, the epoch could also be specified by an arbitrary value of, or an arbitrary

relation between, any of the three variables which have a secular variation: M, _, and

(or _, z, h). There are theories in which the epoch is defined by M -- 0; in others, the

!

¢.n

on
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epoch is defined by a particular latitude of the satellite. For the latter definition, we get

from Equation 46

sin 4o (47)fo = sin'l o_.sin i

Thus, in such theories periodicities of (k ± j)oJ may appear in place of periodicities

(j f + k_) which appear in theories defining the epoch in terms of time. Defining the

epoch in terms of the M, o_, and _, or relations between them, is often related to the use

of M (or E or f) as the independent variable, and runs similar risks of confusion due to

the double use as a position coordinate and independent variable.

Discussions of the constants of integration are given in Reference 15, pp. 411-413,

Reference 19, pp. 115-124, and Reference 20.

Development of the equations of

motion and integration

The usual procedure is a development in a literal series by a process of successive

approximations such as is described in Equations 31 through 44. The result is the

expression of the coordinates and velocity components in terms of a series expansion

of the constants of integration, the parameters of the potential field and the independent

variable, or in terms of intermediary functions. Such an expansion can be contracted

considerably if in place of the theoretical secular rate of change of a position variable a

numerical rate, based on observations, is substituted; this procedure is particularly

applicable in the case of the moon for which the departure from perfect Newtonian

mechanics is small and can be separated in the analysis of observations. The expansion

can be contracted still further if we are willing to accept forms suitable for solution by

iteration, for example, if a variable Pl is expressable as

t
pi : pl [1 + _(p,q>] (4s)

where • << 1.

And finally, of course, the expansion can be contracted completely to the equations of

motion themselves if we proceed by numerical integration from the start. However, for

each of the steps described above, the different periodicities, interactions, etc., become

less apparent, and hence the second purpose of the theory -- a keener insight into the

physical nature of the phenomena -- becomes more difficult to attain.

Before applying the foregoing considerations to the various satellite theories which

have been developed, two techniques of very general application are discussed. These

techniques are empirical orbits and numerical integration.
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3. EMPIRICAL ORBITS

As stated in Equation 31, if the dominant part of the (negative) Hamiltonian F = U-T

can be expressed in terms of momenta Pi only, then each canonical variable can be

expressed as a constant plus periodical terms plus, for the position variables, a secular

term. The same holds true for the Keplerian elements a, e, i, M, w, and _. Hence, if

a purely Newtonian physical situation existed, perfectly observed variations of a Keplerian

orbit could be completely accounted for by empirical Fourier series

I

I-A

a TM ao q

e J e°

i I io

U J M°

I

.0.

0 ! _ek

0 Cck
+ (t- to) +

c_

h k " .C_k

® "S_Lkl

Se k

Sc k

cos ak(t - to)

S_k

sin/_k(t - t o) •

(49)

Since, as described in Paragraphs 5 and 7 of this section, the gravitational variations of

interest to geodesy appear in the orbit as periodic or secular changes of known frequency,

they should be most conveniently deduced from the empirically determined C's and S's

in Equation 49.

Methods of deducing empirical orbits from satellite observations have been most

extensively developed in the differential orbit improvement program of Veis and asso-

ciates at the Smithsonian Astrophysical Observatory (Reference 1, pp. 135-144 and

Reference 21). The actual physical situation not being purely Newtonian, polynomial

terms, exponential terms, and hyperbolic terms are added to take into account drag and
other variations.

The complete expression possible for each orbital element Ei is thus of the form

E i
f_. Pij(t-to)' + S0i j sin [Sll j + S2ij(t-to) ]

I

+ E0i j exp [Elij(t-to) ] + Hoij(Hli j -t)H2ij}.

(50)

Furthermore, the variations are not perfectly observed. The program is primarily

designed for application to directional observations; hence, the semimajor axis is not

included in the elements analyzed by Equation 50, but rather taken as deduced from the

observed mean motion 5 using Equation 63. Secondly, the observations are generally

made at a frequency that is appreciably less than that of the satellite orbit, so that

spurious long period variations could be deduced due to aliasing (Reference 22, pp. 31-33)
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by short period variations of frequency n, 2n, etc. Hence, the short period variations

due to the oblateness J2 are computed by Kozai's formulae (Reference 23) and removed

before applying the analysis (Equation 50).

Empirical orbits are regularly computed by the Smithsonian Institution Astrophysical

Observatory and published in their series Research in Space Scienc% Special Reports.

4. NUMERICAL INTEGRATION

Given adequate computing facilities, the easiest solution to the dynamical problem is

numerical integration of the equations of motion (Equation 12) in rectangular coordinates

by one of the textbook methods for solution of simultaneous higher order ordinary dif-

ferential equations (Reference 24, pp. 261-306, and Reference 25, pp. 375-411). In

astronomy, numerical solution in inertial rectangular coordinates is generally known as

Cowell's method; it is described in Reference 9, pp. 218-222, Reference 12, pp. 89-91,

and Reference 15, pp. 169-175. Numerical integration in rectangular coordinates is the

most widely applied method, and programs for its application exist at all orbit computing

centers either as the principal method or as a check on a general theory program.

The numerical integration techniques of probably greatest application in the United

States are those developed by Cunningham, essentially described in Reference 26. To

retain sufficient precision for geodetic use over several weeks, a double-precision code --

one carrying more than 8 significant decimal digits -- is required, and the time interval

must be 2 minutes or less for a close satellite. In Reference 26, central differences up

through the 10th difference are employed. Iterative evaluation of the integrals is used to

carry forward the position and velocity components for 9 successive steps, after which a

check is made by computing the position components for the 5th step by a central dif-

ference formula; if agreement within 10" 11 is not obtained, the time interval is halved;

if agreement within 10 is is obtained, the time interval is doubled. A single precision

(10 -s ) code (Reference 27) is ten times as fast, and probably adequate for geodetic use

for durations of about a day with a time interval of one minute. See Reference 15, pp.

158-159 and Reference 28 for discussion of error accumulation in numerical integration.

The interval of integration can be greatly increased and hence computing economized

if the numerical solution is made for small departures from a known solution, that is, for

perturbations to an intermediate orbit. Such methods are known as special perturbations

in astronomy, where they have been long applied. The most common method for particles

of negligible mass is Encke's (Reference 9, pp. 222-224, Reference 12, pp. 91-105, and

Reference 15, pp. 176-182) in which the departures from a Keplerian orbit are computed

in rectangular coordinates. These departures (_ = x- x') appear in a differential

equation
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= /'_ (fqx- _) + VR (_1)
rt3

where fq is the negative of the sum of all terms after the first in the binomial expansion

of (r'/r)3: that is, a quantity of the order _/r. The form of Equation 51 is usedbecause

it is convenient for desk calculation since f can be tabulated as a function of q (Reference

12, p. 155). For application to earth satellites, Encke's method could be generalized so

that r' referred to an intermediate orbit taking into account the oblateness.

A method analogous to Encke's in polar coordinates is Hansen's (Reference 9, pp.

224-227); however, it is complicated enough that one might as well go directly to numer-

ical integration in terms of the Keplerian elements, using Equation 29 or the similar

forms expressing the disturbing forces in orthogonal components. Methods of numerical

integration in terms of the Keplerian, or similar, elements are known as variation of

arbitrary constants or variation of parameters or variation of elements. Several such

methods [Brouwer's (Reference 15, pp. 398-414) or Musen's (Reference 29)] have been

developed either in terms of Keplerian elements alone or a combination of some of them

with rectangular or polar coordinates. The further theoretical development of numerical

methods leads logically to a numerical general theory as discussed on pages 26 through
28.

Another numerical method of considerable potential for problems of interest to

geodesy is expression of the perturbations of the elements, or the coordinates, as

numerical Fourier series (Reference 30). This method was apparently originated by

Airy to apply to the lunar problem (Reference 19, pp. 245-246) and has been recently

applied to improving lunar orbit computation by Eckert (Reference 31).

Discussions comparing different numerical methods are found in References 32, 33,

and 34; in general, the simpler methods, such as CoweU's, are preferable if it is desired

to economize in programming and if large or variable perturbations are to be taken into

account, while the more developed methods in the category of variation of constants are

preferable if the time duration is long, if the perturbations are small and systematic, and

if computer time needs to be economized. The more developed methods also give a better

physical sense of what is happening.

I

¢j1

5. GENERAL THEORIES: CLOSE SATELLITE PROBLEM

We define the close satellite problem as the solution of the equations of motion for

a particle of negligible mass in the potential field with the disturbing function R2 of

Equation 14. It may seem historically inappropriate to discuss the close satellite prob-

lem before the lunar problem, but the close satellite problem is both the more important
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to geodesy and the easier, until recently having "... held the distinction of being the

simplest of the unsolved problems of celestial mechanics" (Reference 35).

The first order solution of the problem is attained most simply by using R2 in the

Lagrangian equations (Equation 29). As a consequence, perturbations of the elements are

obtained all proportionate to J2" The coefficient 12 is about 10 -3 for the earth; the other

coefficients of the earth's gravitational field in which we are interested are 10 .6 or less,

so it is necessary that terms proportionate to J_ also be considered. To keep the num-

ber of references to a minimum, we shall discuss only theoretical developments which

either carry effects to include J_ (in Paragraph 5 of this section) or develop the first

order effects for the general term of coefficient Jnm,Knm (in Paragraph 7 of this section).

Of the many derivations of the first order effects of particular terms, only those of Krause

(Reference 36) and Spitzer (Reference 37) warrant mention as having priority. This dis-

cussion is based on the seven items listed on pages 14 through 17 as characterizing meth-

ods of solution. The coordinate systems and the expression of the potential therein are

discussed separately. All the solutions discussed also treat the effects of J4, and some

treat the effects of J3 and Js, but only to the first order, so in this review consideration

of J3,J4, and Js effects is postponed to Paragraph 7 of this section.

Disturbing Function

The force function (negative potential) in spherical polar coordinates is

u = _ - J2 sln2¢_ . (52)
r

The force function (negative potential) in rectangular coordinates is

ae 2(x 2 y2 - "
U -- _ - J2 3z2 (53)

( )_ ×2 y2 2x 2 + y2 + z 2 _ + + z ÷ + z 2)

In an oblate rotational ellipsoidal coordinate system for which the potential (Equation

52 or 53) coincides with the same ellipsoidal coordinate surface at the equator and the

pole (References 38 and 39)

(54)
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where
1

C = ae J2

p specifies an ellipsoidal surface

<_ specifies a hyperboloidal surface by the sine of the angle between its

asymptote and the equator.

The coordinates are not readily separable in Equation 54, so a solution using ellip-

soidal coordinates more conveniently uses (References 38 and 39)

z
l-=t

¢J1

co 2n

UE = p2 + C_::T2 n:_O

(55)

which differs from u by a quantity of order J22.

The potential (Equation 52) in osculating Keplerian elements (References 23, 40, and

Reference 15, p. 564, or Reference 41) is

u : _ - (2- 3 _in2i) + 3 si.2i cos 2 (_, f (56)

and in Delaunay variables (Reference 15, p. 564 and Reference 40) is

' [( ( 'lp.4 J2ae H2 3 H2 3

U = /_ + 3 - 1 + 3 - 3 cos 2(g + f (57)
r 4L 6 _ _- "

To eliminate r, f in Equations 56 and 57, elliptic expansions in powers of the eccentricity

are required (Reference 9, pp. 44-46, Reference 15, p. 564 and Reference 40).

Methods of solution will be classified here -- somewhat arbitrarily -- according to

whether or not the intermediate orbit is identifiable as an exact solution of a part of one

of the potentials (Equations 52 through 57), that is, as dynamical or geometrical inter-

mediaries. The notation has been converted as much as possible from that in the origi-

nal papers to the notation used in this review. For conversions from other oblateness

parameters to J2, see Reference 40, 42, or 43.
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Dynamical Intermediary Theories

The theory of Brouwer (Reference 15, pp. 562-573 and Reference 40) is a solution of

the Delaunay equations (Equations 25, 26, and 27) using the disturbing function in the form

of Equation 57 by the method of canonical transformations as in Equations 37 through 44.

To facilitate the integration of the determining function S and to keep the intermediary

close to the actual orbit, two canonical transformations are made; the first to an orbit

with Hamiltonian F'(L',G', H', g), which thus has the same long period variations as the

actual orbit, and the second to an orbit with Hamiltonian F"(L",G',H"). This two-stage
t a

transformation necessitates an additional term (_FI/'3g)(_S_/3G) on the right of Equa-
l

tion 41. The term F I is completely determined; in performing integrations with respect

to the mean anomaly _, the conversions of Equations 7 and 8 are used and the integrations

formally made with respect to the true anomaly f. Only the long period (that is, not func-

tions of _) variations generated by s 2 are determined, but otherwise the solution is com-

plete to the second order: that is, all variations arising from F2, F 2 are developed. The

constants of integration are the mean elements, that is, the constant parts a', e ", i",

and the secularly changing parts at epoch _" " "o, go, ho- The unperturbed mean motion is

defined as no = _1/2a'" 3/2, which makes the intermediary, the Keplerian orbit corre-

sponding to a potential uo = _/r'. Brouwer (Reference 40) also develops the first order

long period and secular effects of J3, J4' and Js" The problems of zero eccentricity

and zero inclination can be solved by using the canonical variables (Equation 28). The

secular and long period terms arising from 32, in Brouwer's theory, where v = (1-e'2) 1/2

0 : cos i", and _2' = ae2J2/(2a"2774) are:

_, = _.+not {1 + 3 , 3 /2 [_o 2-T277(-1 +3_)2) + 3-2-72 7) 15+16_+25_ 2 ÷ (30-96V-90_q2)B 2

1} 1 , 3[ 1 1102_4004( 1 502)-11+ (105 + 144V + 2ST/2)(_ 4 + _ T2 v - - sin 2g"

, ,, {23 3 _,_2 [_ 35+ 2477+ 25772+ (t)0-192_7-126W2)_92g : go _ _ot _(-1+s0 2) + 3_

- 40(2+5e"2)04 (1-582) -1 - 80e"2 06(1- 502) -2] sin 2g"

= h o + not 8 T_ 2 (-S ÷ 1277 ÷ 9"q2)0 + (-35 - 36_ - 57/2)8 3

1 ,y,_e,,20 [11 +80_2(1 502) "1 2]- _ - + 20084(1-582)-

1, 772 [ ] cos 2g"e' : e" + _'/2 e" 1- 1102-4004(1-5_2)-1

1 'e'2 i" [ - - ] cos 2g"i' = i " - _ _¢2 cot I -- 1102 4084(1 502)-1

(58)



24

There are no long period variations in a. Note that second order periodic terms
s

derived from F 2 and F 2 have become first order in the sense that their coefficients

contain J2 rather than J22. Also note that (- 1 + 582) , contained in the first order secular

term for g', reoccurs in these second order terms for all variables in the form (1-502) -1.

Hence, this theory cannot be used near 8 = (I/5) 1/2 or i = 63 ° 26'. Such orbits must be

treated separately; see page 30.

Kovalevsky (Reference 20) has developed a second order theory similar to Brouwer's.

Garfinkel's theory (References 35 and 44) uses as an intermediary the orbit corre-

sponding to the potential Uo:

: _ I( 3J2a:cl(sin2¢- c2) lU ° ¥ 1 - 3J2 ae2C3 ) - 2r
(59)

where

c 1 =

c 2 =

c 3 =

a(l - e 2)

co s 2i

3 cos2i - 1

The solution of the equations of motion with Equation 59 as the force function is a

"pseudo-ellipse" involving two elliptic integrals. The values of the c i's selected cause

this intermediary to absorb all first order secular motion. The canonical variables cor-

responding to the pseudo-ellipse are similar in form to the Delaunay variables (Equation

26) except that _ is replaced by _' = _(1-3J2ae_ca) and H is multiplied by the factor

1

1 + 6_2 ae2 COS2iq _
p'a2(1 - e2) 2J

t

All first-order variations and all secular and long-period variations arising from F_ in

these pseudo-elliptic elements are found by a canonical transformation of the type out-

lined in Equations 37 through 44.

Sterne (Reference 45) solves for an intermediary orbit corresponding to the poten-

tial Uo:

Uo : r - aJ2_ _ + • (60)
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The solution for the intermediary requires fouF elliptic integrals. First order perturba-

tions only are developed in Reference 45.

Vinti (References 38, 46, and 47) has developed a satellitetheory in ellipsoidalco-

ordinates. He obtains the Hamiltonian-Jacobi equations (Equation 40) corresponding to

the ellipsoidalpotential uE of Equation 55 with each of the three coordinates p._, and

right ascension a separated into differentterms, so that they are integrable by numeri-

cal integration or power series development in J2. The constants of integration can be

selected so that they are describable as generalizations of the Keplerian elements. There

is no singularity at the criticalinclination i = 63 °26' as in Equation 58; there remains,

however, the problem at the criticalinclinationof the perturbations due to the real J4, J6,

etc., differing from the J22, - J 32, etc., of Equation 55 (see page 22). Reference 38 de-

scribes the theory fully as far as the separated form of the Hamilton-Jacobi equations; a

solution including all secular effects and periodic effects to o(J22) has recently been pub-

lished (Reference 46).

Izsak (Reference 39) has accomplished a solution of Vinti's equations which includes

all terms to the second order: short period as well as long period. His solution of the

Hamilton-Jacobi equations is of the form

P _ dp + ]0_ _ da + (61)S(p,q) P 3(Z
;2 + c2 _ _ _2

Pl

where P and (} are quartics of their specified arguments and the three momentum vari-

ables. The lower limits of integration are arbitrary and most conveniently set as the

minimum of ; (analogous to perigee) and the equator. Differentiating Equation 61 with

respect to each of the momentum variables in turn to obtain the angle variables results

in shifting the square roots to the denominator, making the integrals of elliptic type.

Most of the development of Izsak's theory is devoted to transforming these integrals to

normal forms and then expanding them in Fourier Series. The elliptic analogue of the

true anomaly is made the independent variable, and the canonical momentum variables

converted to analogues of a, e, and sin i. Closed expressions for p and <rare obtained

as ellipticfunctions of a, e, sin i, and constants which are functions thereof; these

constants are developed in series of (c/a) to the fourth power: that is,to J:. The four

integrals obtained on differentiatingEquation 61 are developed in Fourier Series of angles

analogous to the argument of latitudeand the true anomaly in Keplerian motion. Finally,

these developments are combined to obtain convenient expressions for the coordinates

and for other quantities of interest in terms of the orbital elements a, e, sin i, to, _, w,

and the true anomaly, which in turn is expressible in terms of time, the elements, and the

parameters c and _. No small divisors appear, so the theory is good for all eccentrici-

ties and inclinations(including 63°26').
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Kozai (Reference 23) proceeds from the Lagrangian equations of motion (Equation 29),

from which the first order perturbations are quickly obtained. The second order pertur-

bations are obtained through integrations of the type

/ (62)

in which Ei is any element and Ei is obtained from Equation 29. Kozai obtains all the

second order long-period and secular terms except those in M, the mean anomaly. His

constants of integration are the same as Brouwer's except for the semimajor axis _:

(63)

where

2
3J2 a e _2 4

3 (1 - 3 cos2i) ;_ 3(5)3
4 (1 - e2) _

which is roughly equivalent to modifying _ to the _' of Garfinkel.

Brouwer (References 48 and 49) has adapted the Hill-Brown lunar theory (see pages

32 through 34) to the close satellite problem, using rectangular coordinates rotating with

the satellite (in the equatorial plane in Reference 48; in the orbital plane in Reference 49

with a circular intermediary). Reference 48 is developed to second order terms, but in-

cludes the inclination and eccentricity as power series developments to i 3 and e 3, and

so is precise only for nearly circular, nearly equatorial orbits. Reference 49 solves only

the intermediary, and does not include the effect of eccentricity.

!
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Geometrical Intermediary Theories

The theory of Musen (References 50, 51 and 52) is based on that developed by Hansen

for the moon. The treatment of perturbations is separated into two parts, those in the

plane of the osculating orbit and those of this plane. This separation is accomplished by

using as an intermediary for the in-plane perturbations a uniformly rotating Keplerian

orbit referred to X¥ rectangular coordinate axes fixed in the orbital plane. The disturb-

ing function R is developed in numerical Fourier Series (Reference 112, p. 123 and Refer-

ence 15, pp. 108-113) of the intermediate eccentric anomaly E' which is the independent

variable. In developing the equations of motion, the polar angle v from the fixed X axis,

or departure point, to the actual satellite is set equal to that for the fictitious satellite in

the intermediate orbit; the perturbations computed are thus of the time the satellite passes
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a specified polar angle: _z = z - t. The radial perturbations r(t) are expressed by a

small ratio _:

r(t) = (1+_) r'(z). (64)

Both perturbations _z and v in the Hansen plane are determined by a single Hansen

function W most succinctly expressed as

(;)(1_): -1 - + 2 _7_ '

where h is defined by Equation 5. (The h in Hansen's and Musen's notation is the recip-

rocal of h as used in this report.) The dimensionless quantity W, like _z and v, vanishes

in the unperturbed case: a principle applied throughout for convenience in computation.

The function initially determined from the disturbing function R is dW/dE' where E' is

used as the independent variable rather than a position parameter. In the integration with

respect to E' to obtain w there are no constant terms or terms of argument E', these

parts of the motion being completely absorbed by the intermediary. This procedure ef-

fectively defines the constant of integration e' as the coefficient of the sin E' varia-

tion in the osculating mean anomaly, in accordance with Kepler's equation (Equation 3).

The constant of integration a' is defined by the "mean" mean motion _ : n' and Kepler's

third law (Equation 6). The orientation of the osculating plane is expressed by four pa-

rameters, two differing slightly from sin (i/2) and cos (i/2) respectively and two dif-

fering slightly from zero; this redundancy of expression gains the advantages of symmetry.

Fourier series expansions in E' are made for the orientation parameters and the inter-

mediary inclination i' is defined so that sin i ' is the coefficient of all sin (f + _)

variation of sin ¢ as in Equation 46. The intermediary also absorbs all secular motion

of the node. Given a set of constants of integration (a', e', i', _%,' f2'o, Mo) and parameters

of the gravitational field (_, J2, etc.) Fourier series and auxiliary constants are devel-

oped by iteration using the principle expressed by Equation 48. Then, for any specified

time the position vector r can be determined by iterating Kepler's equation (Equation 3)

with the mean anomaly expressed as [Mo +_(t - to) + _z] to obtain the eccentric anomaly

E' which is then used in the Fourier Series. The use of iteration enables the precision

of the computation to be set numerically as a limit beyond which the computer no longer

iterates. Musen's theory fails for very small eccentricities because the use of E' as the

independent variable requires a well defined perigee. It also fails at the critical inclina-

tion 63 ° 26'. The theory has been extensively applied by Herget and collaborators as the

basis for the orbital programs at the NASA computing center (References 53, 54, and 55).

Musen has recently published a new theory (Reference 56) with several improvements.

The polar angle v from a departure point is used as the independent variable; conse-

quently, the radius vector and orientation of the orbit plane can be expressed by closed
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trigonometricpolynomialsin placeof truncatedinfinite series, yieldingmorerapid con-
vergencein the iteration process.

In thetheoryof King-Hele(Reference57),the satellite is takento bealwaysin a ref-
erenceplaneof fixed inclination. Theintermediaryin this planeis aKeplerianorbit with
a fixedperigeeargumentequalto that of theactualsatellite at epoch. This epochperigee
is treatedasa departurepointfrom whichthe angularpositionof the satellite is expressed
in terms of thepolar angle. A first approximationof the equationsof motionis solvedby
assumingthat theequationfor 1/r (from Equation8) is modifiedonthe right by terms of
order J2 andthatthe longitudeof thenodeof the referenceplane_ hasa secularmotion
proportionateto J2- Thesefirst approximationsare thenusedin successivesolutions
for terms of order J2e and J2.2Noterms of higherorder are derived,sopresumably
thetheorywill give resultsof precisioncomparableto thosepreviouslydescribedonly
for small eccentricities.

Thetheoryof BrennerandLatta (Reference58)is similar to that of King-Hele's,the
principal modificationsbeingthat thereferenceplanehasa variableinclination,andthat
the secularmotionofperigeein theplaneis allowedfor in expressingtheangularposi-
tion of the satellite. Terms of order J2 e2 or higher are not derived.

Zhongolovich (Reference 59) has developed a second-order theory from the equations

of motion similar to Equation 29 but expressing the disturbing forces in orthogonal com-

ponents: radial, transverse, and normal. The constants of integration are defined as the

osculating elements at the ascending node.

Merson (Reference 60) has also developed a theory to secular effects of J22 using the

equations of motion with orthogonal components of perturbations and nodal elements. He

then determines an intermediate orbit such that a and e are constant to o(J_). $

Comparison of Theories

For the first of the purposes mentioned in the beginning of this section, precision

and efficiency of solution, the theory of Musen (References 50 and 56) is probably the

best attained for most satellites, since the method of solution by iteration is equivalent to

taking into account terms of order higher than j_. Among the literal theories, those of

Vinti (Reference 46) and Izsak (Reference 39) is the most complete solution of the two-

parameter (_, J2) problem, as well as being applicable to the greatest variety of orbital

specifications. However, the theories in References 35, 40, 59, and 60, should all be

$Since writing this review, there have come to our attention further second- or higher-

order theories of close satellites by Barrar (Reference 61), Struble (Reference 62-),

Petty and Breakwell (Reference 63), and Michielsen (Reference 64).
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adequate for the principal geodetic uses, as well as those in Reference 23 when the mean

motion is obtained empirically, and those in References 57 and 58 when the eccentricity

is small. The second purpose, attainment of a keener physical insight, is largely an in-

dividual matter; it is only hoped {he foregoing descriptions will help as a guide to the

theory most suitable.

Two other criteria by which the theories might be judged are the ease of incorpora-

tion of additional effects and the case of comparison of results obtained from a theory

with those from another or from numerical integration. For analysis of phenomena sig-

nificant only for first order effects such as the higher degree: gravitational harmonics,

all theories are equal since residuals from any numerical or literal theory are essenti-

ally the same. Incorporation of phenomena having significant second order effects, such

as drag, has been investigated thus far only for Brouwer's theory (References 15, pp.

514-582, and Reference 65). The irregular variations of drag are so large, however, as

to make any considerable theoretical development of dubious value. The extent of incor-

poration of drag into the numerical application of the Musen theory has been to include a

term expressing secular change of the mean motion n (Reference 54}:

n = no(1 +n2t) • (66)

The principal test of any theory is that it gives the same position and velocity vector

at any instant as are obtained by numerical integration, or the same osculating elements

as a theory already known to be reliable. Bailie and Bryant (Reference 66) give formulas

to enable the latter sort of comparison with the Musen theory. It is also useful and more

conducive to understanding to be able to transform directly from the constants of integra-

tion of one theory to another. Such trangformations are easiest between those theories

using mean elements as constants and spherical coordinate systems, such as those of

Brouwer (Reference 40), Garfinkel (Reference 35), and Kozai (Reference 23); Garfinkel

(Reference 35) gives the transformations between Brouwer's constants and his, while

Equation 63 has obtained agreement between Kozai's and Brouwer's theory to better than

10" s in the secular motions of node and perigee. It is appreciably more difficult to obtain

transformations between the theories in spherical coordinates and those in ellipsoidal

coordinates, or between theories using dynamical intermediaries and those using geo-

metric intermediaries. The only such transformation published, by Message (Reference

67), is limited to a circular orbit between Brouwer's (Reference 40) and King-Hele's

(Reference 57) theories. The difficulty seems to be algebraLc complexity, rather than

error or imprecision of definition, as suggested by Kovalevsky (Reference 20). The use

of osculating elements at perigee or the ascending node as constants of integration in Ref-

erences 57, 58, 59, and 60, caus,_s these theories to have dnferent powers of eccentricity

in coefficients, as well as giving rise to different periods, as indicated by Equation 47.

For example, Zhongolovich's theory (Reference 59) has terms proportionate to ]22 cos _J

in _ and _.
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Theuseof generaltheoriesof oblatenessperturbationsto determinebettervalues
of J2 is discussedonpages37through39.

Special Problems

The problem of the critical inclination, 5 cos2i - 1 = 0 or i = 63 ° 26', is solved by

Hori (Reference 68), Garfinkel (Reference 69), Hagihara (Reference 70), Kozai (Refer-

ence 71), and Struble (Reference 62), using development in powers of I 1/2 as occurs in
_2

the ellipsoidal theories (References 38 and 39). The value of J4 becomes significant by

determining the width of a zone of inclination i in which the perigee oscillates rather

than moving secularly.

For orbits of small eccentricity or small inclination, the canonical elements (Equa-

tion 28) may be used. The imprecision which will exist in the h or g + h does not have

a commensurate effect on the precision of satellite position or velocity because functions

of h and g + h are always multiplied by coefficients of O(sin2i) and O(e), respectively.

An alternative set of elements which, in effect, incorporates these coefficients is given

by Kozai (Reference 23). The problem of small eccentricities is also considered in Ref-

ferences 72, 73, and 74.

Kozai (Reference 75) investigates the effect of the precession and nutation of the

earth's axis, which make the J2 term of R a function slowly varying with time if the

inertial coordinates are used. The largest effect is a secular change amounting to some-

thing more than 20" in a year. In addition, these are periodic variations of amplitude up

to 8". Smaller periodic terms appear if coordinates are referred to the moving equator

of date. (See page 60.)

Kozai (Reference 76) and Musen, Bailie, and Upton (References 77 and 78) develop

the effect of lunar and solar perturbations on a close satellite. The disturbing function

R_ given in Equation 15 is expandable as a sum of Legendre polynomials:

Rs - r; _. Pn(S ) (67)
n_2

where

S = cos(r, r*) = Fi(_,?* ) cos f + o_ + 51_ + (f* + _* : (68)
i

a sum of six terms in which _ = sin (i/2) and /_fl-- fi-_*. The (r/r*) n factor

makes only the two leading terms (n = 2, 3) of possible significance in R. Substituting

I

O1



for S from Equation 68 and carrying out all the multiplications expands P2(S) to 23

terms, including a constant, of the form
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P2(S) = _, Fi(y,_*)cos [s,(f +o_) + biff*+_?) + ciA_ 1 (69)
i

where a i = 0 or 2; b i : -2, 0, or +2; and c i = -2, = -1, 0, +1, or +2,

The expansion for P3(S) contains 56 terms. Next, the disturbing function is converted

from true anomalies f and f* to the mean anomalies M and M* by applying a standard

elliptic expansion for the form (r/a)P cos (qf + a), for example, Reference 9, pp. 44-46.

Since the satellite anomaly changes much faster than any other angle appearing in the

disturbing function, the significant effects upon integration with respect to time will be

those from which the satellite mean anomaly M is absent

*(r;_3) a2-- i(T, 3, ) Gi(e)Long Period /_ r P2(S) : _z* a, 3 _. F *
i

•S. co. + c,,.] (7o)
i

a i
where j ranges from -o0 to +_; Gi(e) iS O(e ), and Gi(e*) is O(e *tj I); e* = 0.017 for

the sun and 0.055 for the moon.

It is evident that the important terms, for which F i G i is large and

{ai_ + bi(_* +_!*) + c i A(/)

is small, depend strongly on the eccentricity and inclination of the orbit acting directly in

F i and G i and indirectly through the J2 effect in _ and ;_ and must be sought out sepa-

rately for each satellite. For example (Reference 77, p. 39), for satellite 1958 2 2

(i = 34.2 °, e = 0.19) the term a i = 2, b i = -2, c i = 2 is the most important, despite

the e 2 coefficient; applying this term in Equation 29 yields an oscillation of amplitude

1.458 km in perigee height. (Some accounts of lunar and solar effects overlook these e 2

terms.)

The complete development of the P2(S) and P3(S) long period terms is given in Ref-

erence 77, plus the P2(S) short period terms in terms of the eccentric anomaly for use

in the Hansen-type theory of Musen (Reference 50).
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6. GENERAL THEORIES: LUNAR PROBLEM

In the motion of the moon, a = 3.84 x l0 s km, the second order effects of J2 in

Equation 58 are negligibly small; conversely, r/r* in 1_s (Equation 67), is appreciably

larger, so that the solar disturbance R S is dominant. Hence, Equations 68 through 70

can be simplified by making the ecliptic the reference plane so that y* = 0. However, the

lunar mean motion n is now appreciable compared to the solar mean motion, n*/n _ 1/13,

so short period terms must be considered; higher order terms up to Rs, 4 containing P4(S)

must be taken into account; and finally, a, y, and e in Equation 70 cannot be assumed

constant, nor _ and _ secularly changing, so that higher order approximations must be

developed.

The lunar problem has had a long history, culminating in the researches of Hansen

(References 79 and 80), Delaunay (Reference 81), and Hill (References 82 and 83). The

theories of Hansen and Delaunay are of great historical interest as the most extensive

applications of certain dynamical principles and techniques, and as the precursors of the

close satellite theories of Musen (Reference 50) and Brouwer (Reference 40), respectively;

detailed descriptions of the Hansen and Delaunay theories are given in References 19 and

84. The theory actually used today is that of Hill as extended by Brown (Reference 85)

and Eckert (References 31 and 86).

The Hill-Brown lunar theory is described in the standard texts (Reference 9, pp. 254-

291, and Reference 15, pp. 335-374). It employs a rectangular coordinate system XYZ

rotating uniformly in the ecliptic plane so that the x-axis points to the mean sun and the

z-axis is normal to the eclipfic. Coriolis and centrifugal force terms thus modify the

equations of motion (Equation 12):

- 2_ × ,, - (r×.*) × .* -- ?U (71)

where n* = (0, o, n*).

Hill substituted u = x + yx/=_, s = x-yff_, . = n-n*, m = n*/(n-n*),

K = (_E+_M)/(n -n*) 2, made the independent variable _ = exp [v(t - to) _z]-l, and defined

the operators D = _(d/d_), D t = _(_/_). These substitutions in Equation 71 and some

further manipulations transform the equations of motion to

!

¢91

9m2(u+s)2_D2(us + z2) -Du "Ds -(Dz) 2 + 2m(sDu -UDs) +

n=2

3 m2(u2_s 2) _R' s _R' s
D (uDs - sDu- 2mus) + 2 -- S _- u bu

D2z -m2z - KZr3 = - 21 bR's_z j

(72)
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where c is a constant of integration and R's,, is the term of R'S containing Pn(S). The

term R's differs from Rs in Equation 67 in three respects: (1) (a/a*) is replaced by

throughout, to allow for the moon's mass (significant only in R:. 3); (2) the solar coordi-

nates r* are with respect to the center of gravity of the earth-moon system; and (3) a

term

3m 2 (u + s) 2

.... m2(us + z 2)
4

has been subtracted from R's, 2 and the corresponding derivatives subtracted on the left

of Equation 72 (Reference 9, pp. 256-259).

The intermediate orbit is the periodic solution of Equation 72 with e*, a/a*, z, and

e all set zero. This causes all terms on the right in Equation 72 to vanish except C, as

well as all left-side terms containing z. The result is that the disturbing force is con-

stant and always in the direction of the x-axis. The intermediary is called the variational

curve; it is an oval rotating so that its shorter axis is in the direction of the x-axis. The

assumption of periodicity requires that the coordinates u, s be developable in the form

_. 2i+I 1

u = A a21
-co

2i+Is = A a_2i. 2

(73)

where A is a constant scale factor, ao is set as unity, and the other constants a2i , a.2i.2,

together with c, are determined as functions of m by a process of successive approxima-

tion, taking the derivatives D, D 2, etc., of u and s and substituting Equation 72 (with

the R' and z terms set zero, as mentioned) and requiring the coefficient of each power of

to vanish separately. The great advantage of Hill's method is that this process converges

rapidly in m whose numerical value is substituted at this point in the theory. The scale

factor A is also determined by a modification of Equation 72 in which _ appears. The

quotient ae/A is the mean parallax as modified from that which would exist in the absence

of the sun according to Kepler's law (Equation 6). This relationship is best expressed for

geodetic purposes as (Reference 87)

1

(74)
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Thesolutionfor the intermediateorbit involvesonlytwo arbitrary constants: to,
theepoch,andn definedasthemeanmotionin longitude. Thenextstageis the com-
plete solutionof Equation72with the R's andz terms set zero, whichis equivalentto
includinge, butkeepinge*, a/a*, and z zero. Theprincipalpart of this stageis the
determinationof aquantityco, where (1-Co)n is thatpart of the meanmotionof perigee
thatdependssolelyonm,by solutionof an infinite symmetricdeterminant.

Thefollowingstagesof solutioncomputethe changesin the solutionof Equation72
by includingsuccessivelyhigherpowersof the small parameterse*, e, k/a*, and sin(i/2).

The arbitrary constants e and sin (i/2) are defined as coefficients of the principal peri-

odic variations in the longitude and in z, respectively (Reference 85, v. 53, p. 69). Brown

(Reference 85) carried the solution to terms of the 6th order, where order is defined as

the sum of the powers of e*, e, A/a*, and sin(i/2) in a product thereof, called a charac-

teristic. The aim of the development was a precision of 0'.'01. The final form is about

900 periodic terms with numerical coefficients. Brown (Reference 85, v. 59) also cal-

culates the planetary effects and the effects of the figures of the earth and moon.

Brown compiled tables based on his solution which were used for lunar ephemerides

1919-1951. Due to small errors in the tables, insufficient terms, and round-off accumu-

lation in the published positions, these ephemerides were insufficient for geodetic uses,

and special numerical solutions were made by Sundman (Reference 88) and Hirvonen (Ref-

erence 89 and Reference 5, pp. 128-146) for the motion over the brief periods of the

eclipses of 1945 and 1947. With the advent of computers, Brown's equations were pro-

grammed directly on the computer and additional terms were developed numerically by

Eckert (References 31 and 86). A special lunar ephemeris (Reference 86) covers the

years 1952-1959, and the improved lunar ephemeris is incorporated in the regular ephem-

eris starting in 1960, giving positions to 0:'001 in right ascension, 0:01 in declination, and

0'.'001 in parallax.

!
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7. TERRESTRIAL GRAVITATIONAL EFFECTS

Paragraphs 5 and 6 examine those gravitational effects which have appreciable sec-

ond order effects. This section examines those effects which are of greatest geodetic

interest, the departures of the earth's gravitational field from that of an oblate ellipsoid.

We shall also examine the numerical solutions for improved values of _= kM and J2,

since the best solution for these parameters must generally be concurrent with solution

for the smaller parameters.
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The earth's gravitational potential may be expressed as a sum of spherical harmonics:

Lr_

Lr_
,-4
v-4

U = _- + Rnm

n=2 m=0

- _P < 1 - nPn( sin ¢) + (Jnm cos nl2_ + Knm
F

nI2 m=l

sin mN) Pnm(sin ¢)1t •

In Equation 75, ¢ is geocentric latitude, of negligible difference from geodetic latitude for

terms other than J2 and Pn = P,,o' Pnm are conventional associated Legendre functions:

k

cosm 2 /:) t ....2tPnm(Sin qb) = 2 n -n_ (n--m--2_! (-1) sin _ (76)
t=O

where k = (n-m)/2, (n-m) even, and k = (n-m- 1)/2, (n-m) odd.

Equation 75 extends the most generally used notation for zonal harmonic coefficients

J,, introduced in Reference 90, and adopted in References 35, 38, 39, 40, 42, 60, and 68.

The expression for Rnm transformed to osculating Keplerian elements (Reference 41) is

n ,ae _z_Rnm - an+l Fnmp(i) ' Gnpq(e) S.mpq(C°'M'_'8) " (77)

p=0 q=.m

The functions in Equation 77 are defined by equations 78 thru 81:

Fnmp (i) = _, (2n-2t)! .... 2t i _,(_) s.t}(n - t)!2 2n'2t sin cos 1
t s

(n-m-2t+s_) (m-s) (_l)c°k2 \ c / p-t-2c (n-m-2t)i

c

(78)

where t is summed from 0 to p or k, whichever is less; s is summed from 0 to m; and

c is summed over all values making the two binomial coefficients non-zero.
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For q = 2p-n,

pt- 1

)( )<;1Gnp(2p-n) (e) = (l_e2)_-n n-1 2d+n-2p' _ 2d+n-2p'
2d + n - 2p' d

d=0

where p' = p if p < n/2, and p' = n-p if p > n/2.

For q _ 21o-n,

(79)

!

-(n+l);(n-2p)

G (e) : X (80)
npq (n-2p+q)

Hansen's coefficients, expanded in Bessel and hypergeometric functions (Reference

9, pp. 44-46). Gnpq(e ) is always o(e_q)).

Snmpq(aJ, M, fl, _;)
= I-Jnm_ (n'm) even

KnmJ(n-m) odd

?l°>e
n (n-m) odd

cos I(. - 2p> + (. - :p + q)M + m(_- e)]

sin [(n- 2p)_+ (n- 2p +q)M+ m(_-_)] (81)

where _ is Greenwich sidereal time.

Denote the derivative of Snmpq with respect to its argument by S'._pq, and denote the

integrals of S._pq and S'nmpq with respect to time, assuming _, M, _, and _ to change

secularly, by S pq and S'.opq. respectively; so that, for example,

S' : Snmpq (82)
nmpq (n - 2p)c_ + (n - 2p + q)n + m(_- 0)

except in the case n even, p = k ) q = 0, m = 0.

Differentiating Equation 77 with respect to the orbital elements, putting the deriva-

tives in Equation 29, and integrating with respect to time gives the total first order ef-

fect of any term Rnm ; for example, on the node:

Gnpq Snmpq (dFnmpl

A_nm : aSP na n+3 (1- i \ di -J 'p,q e2) _ sin i

(83)
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In defining Snmpq , it has been assumed that oJ, _, M change secularly. It is an observed

fact that for satellites high enough to be useful for gravitational purposes, changes other

than secular in these elements are of negligible second-order effect so far as the gravi-

tational harmonics are concerned. In working with observations, _ and ¼ are obtained

empirically, as described on pages 18 through 19. In constructing a mathematical theory

to o(J_). £ and _ are expressed as first order effects ofgood J2.

A development similar to Equations 77 through 83 is given by Groves (Reference 91),

differing principally in that there is more than one inclination function, like arguments

Snmpq are not combined in one term, and the simplified form (Equation 79) is not used for

long-period Gnp q. Musen (Reference 52) develops the terms Rnm in a form suitable for

their numerical Fourier analysis to be incorporated in his Hansen-type theory of satellite

motion (Reference 50).

Examining the denominator of S' in Equation 82, we see that: (1) the largest per-
nmpq

turbations will occur for m _- 0, n- 2p + q = 0, that is, the secular and long period effects

of zonal harmonics; and (2) a term with m _ 0 will not give rise to any effect of frequency

lower than m(_- _). The perturbations (1) will be investigated further on pages 37 through

40, and the perturbations (2) will be investigated further on pages 40 through 42.

Secular and Long Period Terms

For the principal secular or long period effect of a zonal harmonic, or m = 0, the

disturbing function in Equation 77 can be simplified to

n _ 1, n evetl

a e " _ (84)Long Period Rno : -_ZJn a_Fnok(l) Gnk(2k_n)(e ) 2 sifa o_. n odd

The 2 appears because Equation 84 is actually the sum of two equal terms for n odd:

p = k and p = k+l. In addition to the principal term p = k, there will be other long

period effects for n >_4 of appreciably smaller magnitude, since Gnp(2p.n) is O(e _2p-nt).

Taking partial derivatives of Equation 84 and placing them in the equations of motion

(Equation 29), it is apparent that Jn, n even, will give rise to secular changes in M, _,

and f2, but have no effect on a, e, and i, while Jn, n odd, will cause periodic variations of

frequency w in e, i, M, w, and _. For J2, the second order effects must be taken into

account by, for example, Equation 58. Further, as pointed out by Kozai (Reference 92),

the second order interactions between J2 and Jn, n Odd, must be taken into account by

Equation 62 or other means.
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The earliest applicationof satellite motionto determinethe earth's gravita-
tional field wasprobably in 1884by Helmert (Reference93, p. 470)who obtained
J2 = (1084 + 12) x 10 -6 from the moon's motion using Hansen's theory (Reference 77).

Tisserand (Reference 84, pp. 155-158) analyzed the effect of J3 on lunar motion, and

concluded it was negligible.

Since 1957, the exploitation of the long-period and secular effects on close satellite

orbits arising from the disturbing function defined in Equation 84 to obtain improved

numerical estimates of the J, has been the subject of about forty papers. Table 1 gives

the most recent published results of the principal workers in the subject: King-Hele (Ref-

erence 94); O'Keefe and collaborators (Reference 87); Kozai (Reference 95); and Michiel-

sen (Reference 96). Other recent summaries of results are given in References 42, 43,

94, and 97.

Table 1

Estimates of Zonal Harmonics from Satellite Motions

Source J2 x 10 6

[King-Hele
!(Reference

94)

O'Keefe,

Eckels, and

Squires

(Reference

87)

Kozai

(Reference

95)

Michielsen

(Reference

96)

1082.79

-+0.15

1082.49

±0.06

1082.19

±0.02

1082.66

Notes:

J3x 106 J4x 10 6 Js × 106 J6 × 106

-1.4 0.9

±0.2 _+0.8

Motions Type Dura- Orbits

Used Obser- tion h_
vations Days Km e i

RI 207 650 0.19 34 °

R, O 120 550 0.03 50 °
KT 130 230 0.07 65 °

-2.39 -1.70 -0.30 ? fl,_,

±0.26 ±0.06 ±0.53 Ae,A_,A_

-2.29 -2.13 -0.23 _,£

±0.02 ±0.04 i0.02 Ae,AoJ

AO, Ai

-2.5 -1.72 +0.25 0.73 _,_

Ae

RI 300 650 0.19 34 °

BN, RI 90 650 0.19 34 °

BN, RI 90 510 0.19 33 °

BN, RI 50 550 0.03 50 °

RI -900 650 0.19 34 °

O 755 290 0.03 51 °

O 755 280 0.03 65 °

RI = Radio Interferometric (Minitrack), R = Radar, O = Optical, KT = Kinetheodolite

BN = Baker-Nunn Telescope

?Arithmetic error in Reference 87 corrected.

*For each satellite, two sets of observations, each set of two weeks duration or

less, two or three months apart were used.

I

v.a
¢J1

¢.n

In addition to the quantities listed in Table 1, Michielsen (Reference 96) has made

estimates of if7 (-0.6 x 106), J8, and J9 which are of dubious value.

As is usually the case in such comparisons, the results disagree by more than their

respective internal standard deviations. The discrepancies are probably not due to any

failing in the gravitational theory: lunar-solar and second-order J2 terms were included
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in all the investigations, while the contribution of zonal harmonics higher than J6 should

be slight. All the investigations also removed secular drag effects before analyzing for

the J's. The most pertinent data on length of record, orbit, and means of observation

are listed in the table; additional data which would be of interest, but which is not readily

deducible from the sources, are the range in latitude from which observations were made,

the total motion of the perigee with respect to the sun over the duration of the observa-

tions, and, for observations using reflected light, the total motion of the node with respect

to the sun. Of the causes for error discussed in more detail on pages 41 through 42, the

results of King-Hele (Reference 94) may possibly be affected by a high noise level from

1957 fl (h = 230 km) due to both drag and the theodolite observations; the results of

O'Keefe et al by the lack of variety in orbital specifications and by systematic errors of

the radio interferometric observ:ttions; the results of Kozai by the shortness of the record

used, which may induce some ge,,metrical "aliasing" with the reflected sunlight observa-

tions; and the results of Michielsen by the shortness of the record used and the high noise

level from both observations and drag for the optically-observed, low perigee satellites.

An estimation of J3 in addition to those in Table 1 is that by Cohen and Anderle (Ref-

erence 98) based on Doppler observations of satellite 1960 y 1 (Transit lb): J3 = -2.3x 10 -6

In addition to the differences of satellite specifications, orbit, and means of observation,

Cohen and Anderle computed the orbit by numerical integration in rectangular coordinates,

as described on page 19. This method of computation effectively ruled out any possibility

of overlooked J: terms of argument _, as suggested by Reference 99 on the mistaken

belief that the anomaly of the int¢'rmediary is defined as in Equation 47.

Newton (Reference 100) has recently obtained from the orbits of 1958 f12, 1960 _1,

and 1960 vl, .13 = (-2.42_0.10)x l0 -6, Js = (-0-22i0.07) x10-6, and JT= (-0.27 =L0.07) x10 "6.

Since the differences in results are probably due as much to differences in treatment

as to inaccuracies in the data, it is difficult to make a prudent compromise among the

values in Table 1. Conservative estimates might be:

J2 = (1082-3 i 0-2) xlO-6

J3 = (-2"3 ± 0"1) xlO-6

J4 = (-1.8 + 0-2) xlO'6

.Is = (-0-3 :_0-2) xlO'6

In addition to the zonal harmonics, it is appropriate to mention here determination

of the leading term in the potential kM = _ essentially from the mean motion and Kepler's

third law (Equation 6). The necessary modification of Equation 6 for close satellites is

Equation 58, plus terms for drag and higher even degree zonal harmonics; for the moon,

it is Equation 74. Measuring the length of record in satellite periods, observations of

satellite 1958 _ 2 already well exceed modern observations of the moon. However, aside
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from thedifficulty of removingdrageffectsfrom the mean motion of close satellites, the

necessary length scale is obtained from the relative position of tracking stations, the ac-

curacy of which depends on the connecting geodetic triangulation: also the principal limi-

tation on the accuracy of kM from terrestrial data. An independent determination thus

depends on the scale being obtained from range measurements of the satellite, which

makes the moon the most suitable object. In Equation 74, the values fl = 0.00090768 and

n = 2.6616997 x 10 -6 radians/second (Reference 85, v. 57, p. 109) can be considered as

of negligible uncertainty. The ratio ;_M/_E, or rather the equal quantity which is the pro-

portionate displacement of the earth's center of mass from the center of mass of the

earth-moon system, is essentially determined by the variations in parallax of observa-

tions of the minor planet Eros upon its close approach. The most recent determinations

of _E are: by Jeffreys (Reference 101) (using Spencer Jones' data) 1/81.291+ 0.027; by

Rabe (Reference 102) 1/81.375 + 0.026; and by Delano (Reference 103) 1/81.219 ± 0.030.

Rabe's solution is the most comprehensive, using 19 year's data to obtain corrections to

the orbits of Eros and the earth, the masses of the four inner planets, and the equinox and

equator of epoch; while Delano's solution is confined to obtaining corrections to the orbit

of Eros and the earth's mean motion in the eight months around the close approach of

1930-31. The mean distance A is the most uncertain quantity in Equation 74. Until re-

cently, the primary method of estimating A was essentially by triangulating, through oc-

cultations observed from points in the same geodetic control system; the most recent

discussions are by O'Keefe and Anderson (Reference 104) and Fischer (Reference 105).

Now the more accurate method is by radar measurement of the lunar distance; such a

program has been carried out by Yaplee and collaborators (References 106, 107, and 108).

Their latest result, A = 384402 • 1.2 km (Reference 108), obtains kM = (3.986141 ± 0.000040)

x 1014 m3/sec 2 with Rabe's _M/UE and 3.986048 x 1014 ma/sec 2 with Delano's value.

!

O1

Daily and Short Period Terms

The first estimate of the effect of a tesseral or sectional harmonic effect on a sat-

ellite orbit was by O'Keefe and Batchlor (Reference 109), who showed that the sectorial

harmonic J22 estimated by Jeffreys (Reference 110, p. 187) should give rise to a readily

observable semidaily oscillation in a circular orbit. A more general study (Reference 41),

using amplitudes estimated from autocovariance analysis of terrestrial gravimetry (Ref-

erence 111), shows that even degree terms such as nm = 22, 41, 42, 61 should give rise to

daily and semidaily oscillations on the order of _100 meters in orbits of semimajor axis

less than 104 kilometers, while odd degree terms such as nm = 31, 32 should cause com-

parable effects for orbits of eccentricity 0.2. It is further indicated that the total of all

gravitational harmonic effects of frequency n or higher (other than those of J2) should be

on the order of !50 meters or less. Hence for estimation of tesseral and sectorial har-

monics the disturbing function (Equation 77) can be expressed as
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Long Period Rnm

n n- 1

_ _'ae
_n+ 1

p=l

Fnmp(i) Gnp(2p-n)(e)

• cos (n-2p3_ + m(f_-8)

(n-m) odd

- sin (n-2p3o_ + m(_-8) ,

J.
(n-m) odd

(85)

in which Fnm p and Gnp(2p_n) are defined by Equations 78 a,_d 79, respectively.

Solutions thus far obtained for tesseral and sectorial harmonics from Baker-Nunn

camera observations (References 112 and 113) are probably distorted by the neglect of

the interaction with datum error for non-uniformly distributed observations, and those

from Minitrack radio interferometers (References 114 and 115) by errors in orientation

of the antennas. As of this writing, the only results which might be reasonably close to

the correct values are for R22 and R41, for which Kozai (Reference 113) obtains from

66 day's Baker-Nunn camera observations of three satellites:

J22 = (-0"60:_0"19)x10-6, K22 = (+2"24±0"19)x10-6'

J41 = (+0"25:_0"04)x10"6, K41 = (-0"08±0"03)x10"6'

and for which Kaula (Reference 115) obtains from 385 day's Minitrack observations of

one satellite:

J22 = (-0"38_0"59)x10"6, K22 = (+1.64 _0.58)x10 -6 ,

J41 = (-1.12 t0.14)x10 "6, K4x = (+0.26 :_0.15) x10 -6

The orbital variations of satellites may properly be considered as stochastic time

series in which there is a mixture of discrete spectra for the gravitational effects and a

continuous spectrum for drag. ltowever, the texts on the analysis of time series, for

example, References 22, 116, and 117 are not of much help because the dominant statisti-

cal consideration for close satellites is the non-uniform distribution of observations.

This non-uniformity arises mainly from a geometrical limitation: observations at any

given station will always be at times when the satellite is within a few degrees of the

values of the angles (_- 8) and (_ + f) corresponding to the station zenith. In the case of

optical observations, there is also the limitation of dependence on solar illumination of

the satellite. Since m(_-9) is the principal argument in Equation 85 for even n, and
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m(_-8) ±_ for oddn, theeffectsof even-degreegravitationalterms for anyduration,or
odd-degreeterms for shortdurations,asobservedfrom oneor a few stationsare diffi-
cult to separatefrom eachotheror from theeffectsof stationposition,orientation,and
timing errors. Non-uniformdistributionalsogreatly increasesthecontaminationof es-
timatedR,m'Sby longerperiodeffectssuchasdrag andlunar-solar attraction,andin-
creasestheabsorptionof theeffectsof the Rnm'Sbytheparametersof thereferenceorbit.

Thevarious interactionsaffectingdeterminationof the tesseralandsectorialhar-
monicsfrom satellite orbits are further exploredin Reference115whichsuggests:
(1)usingobservationsover severalrotationsof nodeandperigee;(2)weightingobserva-
tions inverselyproportionateto their densitywith respectto (_- 8); (3)usinginitial
weightedestimatesof thedatumparametersandgravitationalcoefficients,asdescribed
by Equations137and138below;(4)usingreferenceorbits coveringat least fifty observa-
tions; and(5)absorbingsecularandlongperiodaccelerationsby at least0.15W param-
eters, whereW is thedurationin dayscoveredbythereferenceorbit.

Physicalconsiderationsaffectingthesesuggestionsare further discussedin Para-
graph8of this Section,andgeometricalconsiderationsin Paragraph4 of SectionII.

Aninterestingpossibility whichshouldbementionedin connectionwith thetesseral
andsectorial harmonicsis resonance,that is, in thedisturbingfunction(Equations77and
81)thefollowingconditionoccurs:

(n-2p)_ + (n-2p+q)n + m(_-b) = 0. (86)

Such resonance is discussed by Groves (Reference 91) and Cook (Reference 118). From

Kepler's third law (Equation 6) we obtain

2 1

a = /_3 n" _ ,_ _ m p. (87)n-_,+q (b- >

which yields for m = 1, 42,200 km; for m = 2, 26,000 kin; for m = 3, 20,300km, etc. These

conditions are most likely to be realized in connection with communication systems which re-

quire an orbit of _ + a, + n -- _ and near circularity, for which the lunar-solar effects

would be small even at a = 42,200 km.

!

¢j1

Tidal Effects

Historically the most renowned geophysical application of celestial data is that of

the secular acceleration of the moon's motion, the deceleration of the earth's rotation,

and the energy dissipation in the earth inferred therefrom. The secular acceleration was
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first discoveredin the17thcentury,andits geophysicalexplanationbytidal friction sug-
gestedin the 18thcentury,but its mathematicaldeterminationwasa subjectof muchcon-
troversy in the19thcentury(Reference84,pp.240-256)andits geophysicalexplanation
is still unsettledin the20thcentury(Reference110,pp.230-263andReference119,pp.
198-249).

Theclosesatellitescannotcontributeto thetidal friction problem,but theresponse
of satelliteorbits to the lunarandsolar perturbations(Equation67)suggestthat theymay
beperceptiblyperturbedbythetidesontheearth,whicharepoorlydeterminedfor much
of the surface. Wefollowtheusualdivisionof thesubjectinto earthtidesandoceantides.

Thepotentialdueto earthtidesmaybeexpressedas (Reference120):

R T : K(r)R S .
(88)

At the earth's surface K is Love's number k which we assume constant. We also

assume that only the P2(S) term in Equation 67 is significant. These assumptions make

R w a second degree harmonic at the earth's surface, which must therefore extrapolate

proportionate to (ae/r) a. Setting r : ae in Equation 67 and using Equation 69 yields:

RT - Fi(Y,y* ) cos ai(f+°_) + I'i(f* +c°*) + ciA • (89)
r*3

i

Apply Equation 7 and Equation 8 to integrate with respect to the mean anomaly to ob-

tain the long period terms:

Long Period R T -

3

r*3
i*_ i

+ (bi ÷J)U* + ci_fl] (90)

where a_ = 2. Since R T iS proportionate to r -3 (instead of to r 2 as is P's) there are no

long period terms containing 2_o, such as are most significant in Rs. For the terms

a i = 0, RT "_, k(ae/a)SRs; taking typical values k = 0.3, a = 8.0 x 106 m, a = 6.37 x 106 m,

we obtain RT _ 0.1 Rs.

For oceanic tides, the dimensions of the ocean basins become significant; approaches

to resonance may cause tides to be more than ten times the equilibrium tide (which is

less than a meter in amplitude). The patterns of ocean tides are the amphidromic sys-

tems (Reference 121): lines of equal phase radiating from nodes on the order of 60 ° arc

apart. We can represent the tide 5 at any point by

r(qb,)v,t) _i(c_,}v) cos bi(f* +o0") + c i ± O • di(qb, N )
i

E [ _1 (91)= _inmPnm(Sin qS) cos bi(f* +w*) + ci:_* ± 0 + rnN + din .
i,n,m
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From the formula for a surface layer, the corresponding potential coefficient is

4vrk a:

Jinm (2n + 1); Pw _i,m (92)

where k is, once again, the gravitational constant and p,, is the density of water. The

complexity of the ocean tidal pattern makes it unlikely that any 5i,m exceeds one meter

for normalized harmonics, even though the total tide may be quite large. Assuming a

5i22 (normalized) of one meter yields Jiu2 (conventional) of -10 "8, or two orders of

magnitude smaller than the J22 mentioned on page 41. Hence, for any ocean tide term

5into to have a perceptible effect, its argument must yield frequencies on the order of

0.01 cycles/day when Equation 91 is transformed to orbital elements, analogous to Equa-

tion 77.

!

Relativistic Effects

The largest relativistic effect is the secular motion of perigee (Reference 122,

p. 217):

3_

= 3p. n = 3_2 (93)
s

c2a(1-e2) c2a2(1 - e 2)

where c is the velocity of light. Table 2 compares the relativistic effect on satellites

of eccentricity 0.20, inclination 0 °, with the effects anticipated from the even degree

zonal harmonics, which are maximized for equatorial orbits. The zonal harmonic effects

were computed using amplitudes from autocovariance analysis (Reference 111) in Equa-

tions 84 and 29.

Table 2

Comparison of Relativistic and Estimated

Zonal Harmonic Effects on Perigee Motion

Inclination 0 Eccentricity 0.2

Semimajor Relativistic J2 J4 _(J6) _(J8) _(JlO )

Axis _ _ _ _ _
Km Sec "1 Sec "I Sec "1 Sec -1 Sec "1 See -1

104

2 x 10 4

3x 104

4 x 10 4

8.66 x I0 "13

1.54 x I0 -13

5.50 x I0 "14

2.69 x I0 "14

9. I0 x i0" 7

8.02 x 10 -8

1.94 x I0 "8

7.04 x 10 -9

I. 76 x I0" g

3.89 x I0 "II

4. 18x I0"12

8.6 x I0 "13

±8.1 x i0 "IO

4.5 x 10 -12

2.1 x 10 "13

±2.5 x I0 "14

±4.3 x I0 -I0

5.9 x 10 "13

1.3 x 10 "14

+8.2 x 10 "16

±2.0 x I0 -I0

6.9 x 10 -14

6.5 x I0 -16

_2.4 x i0 -17
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Table 2 indicates that the relativistic effect need not be taken into account in at-

tempting to determine J10 or lower zonal harmonics from close satellites; and, con-

versely, that the anomalous variations in the gravitational field will be a serious hin-

drance to observation of the relativistic perigee motion for satellites less than 104 km in

altitude. Furthermore, Equation 93 is not the relativistic effect of principal interest,

since it has already been confirmed by the orbit of Mercury. Those effects which are of

interest to investigators of relativity (References 123, 124, 125, and 126) are on the

order of 10 -2 smaller: the effects of the earth's rotation, the earth's velocity in its orbit,

the relativistic correction to the J2 effect, the difference between atomic and gravita-

tional time, secular change in the gravitational constant, etc. The difficulties in extract-

ing these effects from a satellite orbit will be between drag [tnd terrestrial gravitational

effects for orbits which are too h)w and complicated higher order effects of the lunar-

solar perturbations (Equation 67) for orbits which are too high.

8. NON-GRAVITATIONAL EFFECTS

Regarding non-gravitational effects as things to be eliminated or avoided as

much as possible to attain the geodetic objectives, the physical effects on a close satellite

orbit of mechanical drag by the atmosphere, of electromagnetic effects, and of radiation

pressure are examined; the extent to which the phenomena causing these effects have been

described in observed or theoretical models and the extent to which observed orbital vari-

ations remain unexplained are investigated; and finally the implications of these results

for the accurate description of an orbit necessary for its geodetic use are discussed.

Mechanical Drag

At the altitudes of geodetically useful satellites, the mean free path of air particles

is large in comparison to the diameter of the satellite. Consideration of the momentum

transfer between the air molecules and the satellite leads to an equation for the vector of

the force on the satellite (References 127, 128, and 129):

ed : -_ _- p(r) k)_-I (94)

where A is the cross sectional area of the satellite, p is the air density, and c D is a

coefficient dependent upon the shape of the satellite and the manner of reflection of the

air particles. For specular elastic reflection from a sphere, CD = 2.0; for diffuse reflec-

tion, CD = 2.67; usually some intermediate value is used. Thus the b(r) in Equations 16
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and17is (CD/2)(h/m)p(r). As in Paragraphs 2 through 7 of this section, we set the first

m in Equation 94 as unity. Using Fd in the Lagrangian equations for orthogonal force

components (References 9, p. 151, and 15, p. 301) leads to (References 129 and 130)

d P = _ 3C D adt

3

(1 +e cos E) ]

1

(1 -e cos E) _

p(r) dE (95)

where the period P = 2v/n.

Equation 95 is exact; to proceed further, it is necessary to assume a law for p(r).

The simplest assumption is constant temperature and hydrostatic equilibrium, leading to

p : p, exp (96)

where the subscript v refers to perigee and H is the scale height (on the order of 100 km).

Before solving Equation 95 for P and the other elements, King-Hele (References 130 and

131) and Sterne (References 129 and 132) introduce the rotation of the atmosphere, most

simply expressed by multiplying the force (Equation 94) by a factor

1 - r 0 cos i

which lies between 0.9 and 1.1. The integral is then evaluated as a power series expan-

sion in e, most conveniently in Bessel functions of the first kind with imaginary argu-

ment In(%/H).

The rates of decay of p in Equation 96 are such that the drag is concentrated around

perigee for all orbits except those which are virtually circular. The leading terms in the

resulting equations for eccentricity, perigee radius, and period (Reference 131) are

1 tE.(l. ......lo: 1

t 1--r_r -- -- 1 ......r. ° = _ VL

3.( °°/ ) ]p--_P = 1 - _- 1 - 1 + _ 17 tL 3 + .....

where the lifetime t L is defined by

3eoP o

t L = 41_o I 7eo H "l- -- 1 + _ + 2aoe_ + .... .

(97)

(98)

I
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Also applicable is

Pm 2_ I1_ 2e _ H 1p,, = - 3N_D g_ + ..... • (99)

I--I

E-.,

Equation 97 indicates that the perigee radius decreases much more slowly than either

the eccentricity or period. This suggests that for gravitational analyses the drag effect

could be deduced empirically from the change in the mean motion and the small second

order effects on the other elements computed therefrom, assuming the perigee radius to

remain constant. This method is used by O'Keefe and collaborators (Reference 87), who

obtain:

2 (1-e) An

4(1 - e2_ i" _ J2 AM

All -

2

cosi(7-e)

> (I00)

where An could be obtained from Equation 66 or a sum of such terms for different seg-

ments, whence

AM = nn2t dt _ nin2i 2 - n° n2i Atl + htj (101)
i i-I ]li÷l

where n 2 is the negative of I_/P.

Brouwer and Hori (Reference 65 and Reference 15, pp. 574-582) have developed a

canonical theory of drag which assumes an exponential atmospheric density of the form of

Equation 96 and which takes into account the interaction of drag with the oblateness J_.

Izsak (Reference 133) developed expressions for the short period drag perturbations

due to an exponential atmosphere from which he obtained oscillations about a secular

change of about 0.6 km in semimajor axis, +0.02 ° in mean anomaly, and -0.008 ° in perigee

argument for e = 0.10 and p_ = 1.9 x 10 "12 gm/cm 3, nearly all of it occurring within 30 °

of perigee.

Jacchia (Reference 134) and Groves (Reference 135) consider the effect of an addi-

tional term in the scale height H:

H = H,r + fl(r - r,,) . (102)
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ExistingatmosphericmodelsindicateP maybeasmuchas0.2. Therelativeerror
resultingin the 1_ of Equation95from assumingH constantis at most 2/2, and varies

but slightly with eccentricity (Reference 134}.

The effect of the rotation of the atmosphere (References 132 and 136) is to cause

slight diminutions in the rates of decrease of period, mean distance and eccentricity, and

a gradual decrease in the inclination of a direct orbit (with reversal of signs in a retro-

grade orbit), plus a variation in the node of frequency 2_. For 1958 _ 2 (h = 650 km) the

computed rate of inclination change is -0:'004/day (Reference 132).

The effect of the oblateness of the atmosphere (References 132 and 137) is to cause

oscillations of frequency 2_.

!

O1

Electromagnetic Effects

The satellite moves in a partly ionized medium and in a magnetic field, and, most of

the time, in the energy field of the sun. The resulting electromagnetic effects anticipated

include (References 128 and 138):

(1) The satellite is bombarded by electrons moving at a much higher velocity and

thus acquires a negative charge.

(2) When the satellite is in sunlight the charge may be increased due to increase in

the high energy population of electrons.

(3) When the satellite is in sunlight the charge may be decreased due to photoejec-

tion of electrons.

(4) The negative charge of the satellite causes an electrostatic deflection of the

more slowly moving positive ions with a resulting momentum transfer and thus

an increased drag.

(5) The attraction of the negatively charged satellites for positive ions results in an

increased number of collisions and hence an increase in mechanical drag.

(6) The overtaking of positive ions by the satellite results in a non-symmetric

charge distribution which modifies effects (4) and (5).

(7) The motion of the satellite across the geomagnetic field induces a voltage in the

satellite, affecting the distribution of incident electrons (1) and hence of the

negative charge.

(8) The charge of the satellite will be increased if it carries a powerful radio

transmitter.
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(9) The non-uniform charge from effects (6) through (8) causes an electrical cur-

rent in the satellite which interacts with the geomagnetic field, resulting in an

additional mechanical drag.

It is estimated by Jastrow and Pearse (Reference 128) and Beard and Johnson (Ref-

erence 138) that the increased mechanical drag (5) is much more important than purely

electrostatic drag (4) or magnetic field interaction (9) [except possibly for satellites more

than 50 meters in diameter at altitudes above 1200 km (Reference 138)]. Whether the to-

tal electromagnetic effects are appreciable compared to the neutral mechanical drag de-

pends on the magnitude of the satellitepotential (I) as modified by (2),(3),(6),(7),and

(8). Jastrow and Pearse (Reference 128) assumed a mean electron energy of 1.5 ev, and

estimated therefrom that a potential of -30 volts could be acquired by the satellite,in

which case the charged drag could be appreciable. Benefiting from more recent knowl-

edge of the atmosphere, Beard and Johnson (Reference 138) assume a mean electron

energy of 0.I ev, leading, in conjunction with the magnetically induced effect (7),to a sat-

ellitecharge of a few tenths of a volt, which has been borne out by measurements on

rockets. This small a charge makes the estimated electromagnetic effects small com-

pared to the fluctuationsin the neutral mechanical drag.

The electromagnetic effects all act to increase the drag force vector in Equation 94,

and hence to increase the magnitudes of the effects in Equation 97. Hence, ifthe descrip-

tion of energy dissipating effectsis obtained empirically, the electromagnetic effects are

lumped in with the neutral drag. The present situationis that no orbital effect has been

observed ascribable to electromagnetic effects;ifthey do account for part of the discrep-

ancy between observation and theory, itis for a minor part compared to atmospheric

variations in response to solar effects. However, the theory of electromagnetic effects

is stillincomplete, and itis not to be ruled out that they may be of significance for geo-

detically interesting satelliteswith perigees in excess of 1200 km altitude. An extensive

recent review by Chopra (Reference 139) expresses doubt about many conclusions in Ref-

erences 128 and 138 and estimates electromagnetic effects to be more important than

mechanical drag above about 300 km altitude,negating most of the deductions as to air

density described on pages 50 through 53.

Radiation Pressure

An energy flux S incident on a surface at angle 0 to the normal will give rise to a

pressure normal to the surface (Reference 140, p. 616):

S. El

Pn = (1+_<) --COS 8 (103)
C
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where c is the velocity of light and the coefficient (1 + K) varies between 1 (perfect ab-

sorption) and 2 (perfect specular reflection). The force on a body is then obtained by in-

tegrating Equation 103 vectorially over the illuminated surface.

The radiation pressure due to the sun is a known force: S is 1.4 x 106 ergs/cm2/sec

near the earth (Reference 141), except for uncertainty as to the reflection coefficient K

for some satellites. Solar radiation pressure was first successfully invoked to explain

long period residuals on the order of 2 km in the orbit of 1958 f12 (References 142 and

143), and has since been amply confirmed by the large Echo satellite (References 144,

145, and 146) to include specular reflection.

Musen (Reference 147) has analyzed the long period effects of solar radiation pres-

sure and neglecting the effect of the earth's shadow. These long period effects have six

terms for the variation of each orbital element, the arguments of the six terms compris-

ing all possible combinations of the form

Arz = _ + _ + (f* +_*). (104)

The combination _ + _ - (f* +_*) gives rise to an 890-day period for 1958 f12, account-

ing for most of the 2 km perturbation. Musen also analyzes the resonant case of a sat-

ellite whose perigee follows the sun.

An adequate theory of radiation pressure effect must incorporate short-period terms

because there are long-period variations of the orientation of the orbit with respect to the

shadow (Reference 148). These variations are significant because they cause long-period

variations of the semimajor axis, or energy, of the orbit. The resulting accelerations

will exceed those due to drag for perigees above 1000 kin, and have been the subject of

much investigation in the orbit of 1960 L 1 (References 149 and 150).

Terrestrial radiation pressure also exists. Of the total insolation, an average of 36

percent is reflected or back-scattered, and 64 percent is absorbed and, after redistribu-

tion in latitude, reradiated (Reference 141). The 36 percent reflected would be mainly

directed counter to the direct solar radiation, while the 64 percent reradiated would be

mainly directed counter to the principal gravitational term, so it is doubtful that terres-

trial radiation pressure will ever be identifiable in a satellite orbit.

Observed Variations and Theoretical Models

of the Atmosphere

As mentioned, no electromagnetic effects on orbits have yet been distinguished from

mechanical, while radiation pressure is a known force, so discussion toward improved

knowledge of orbital variations is confined to mechanical drag, dependent on the density

p(r) in Equation 94.
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In the three years of satellite observations 1957-1960, a description of the atmos-

phere has been constructed therefrom up to 700 km, a limit set by the perigee height of

1958 fi2 (650 km). The results of the many investigations published are summarized in

the recent papers (References 151, 152, 153, 154, 155, 156, 157, and 158). The principal

characteristics for the zone 300 to 700 km inferred from orbits in these papers are:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

A density at midnight for latitudes below 50 ° averaging 4 x 10" 14 gms/cm 3 at

300 km decreasing to about 5 x 10-17 gms/cm 3 at 700 km

A slight decrease from this midnight density until dawn, after which there is a

rapid rise reaching a peak at 2 p.m. of about 6 x 10" 14 gms/cm 3 at 300 km,

decreasing to about 6 x 10" 16 gms/cm 3 at 700 km

A variation of the density closely correlated with the fluctuations of the solar

flux at wavelengths of tile order of 10 to 20 cm, in which the 27-day solar rota-

tion period is often prominent: these variations are much more pronounced at

higher altitudes and on the day side of the atmosphere, with a maximum to mini-

mum density ratio of about 2:1

Brief increases in density during magnetic storms

A decrease in the average atmospheric density from 1958 to 1960, more pro-

nounced at higher altitudes and on the day side of the atmosphere, and coinciding

with a decrease in the ll-year cycle of solar activity (References 151 and 153)

Little variation of density with latitude (Reference 153)

A semiannual variation of density with a minimum in June-July-August about 0.6

times the maximum at 300 km (Reference 155), and a less pronounced minimum

in January correlated with the kp index of magnetic activity (Reference 158)

Erratic fluctuations of 1; about a model describing (1), (2), (3), and (4) above

with an rms magnitude between 0.5 and 1.0 x 10" 7 and including components of

several day'speriod for satellites of perigee between 500 and 700 km (Refer-

ence 151).

Jacchia (Reference 151) has formed empirical models to describe the variations (1),

(2), (3), and (5) of the form

pH _ = f0(h) F20 1 + fl(h) cos n-V (105)

where f0(h) and fl(h) are exponential functions of altitude, F2o is proportionate to the

20-cm flux intensity, and @' is the angular distance from the high point of the daily

bulge -- which, as stated in (2), lags 30 ° = 2 hours behind the subsolar point. A similar

formulae has been developed by Priester (Reference 158).
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TherecentEchosatellite 1960 Laddsa newdatumto the aboveresults of about
10-18gm/cm3 densityat 1500km altitude. Theanalysisof1960 _1 orbit is complicated

by its small eccentricity, the radiation pressure effects, decreasing mass due to gas loss,

and probably significant electromagnetic effects, so the interpretation of this density is

unsure (References 146, 149, 150, and 158).

Most of the foregoing conclusions apply to variations in the atmosphere of frequency

less than 0.25 cycle/day since the observations on which they are based are smoothed by

using 1_ averaged over periods on the order of two days. An autocovariance analysis

(Reference 115) of Jacchia's data for satellite 1958 /32 over 462 days (Reference 151)

obtains as a quite consistent estimate of spectral density of the acceleration D = 0.6 and

q = 19.2 in

!

_f (p) : D exp(-qf)/(cycle/day) (106)

for 0.022 < f < 0.216 cycle/day, where _ is the mean acceleration, which for 92 days

blocks varied from 2.0 x 10 -7 to 5.4 x 10 "7. For frequencies higher than 0.216 cycle/day,

0.0035 (152/f) cycle/day can be taken as a safe maximum. Another statistical analysis of

drag by Moe (Reference 159) assumed randomness of density fluctuations from one sat-

ellite period to the next (except for a 27-day sinusoidal oscillation) which greatly exag-

gerates the high-frequency spectral density compared to Equation 106.

For an extension of the reference model above 700 km, for an estimation of varia-

tions with latitude and longitude, and for a physically deduced estimate of the short period

fluctuations in atmospheric density, appeal must be made to theory: (References 152, 156

and 157). The range of interest is divided into two parts: (1) the thermosphere, from

about 100 km to 600 km, characterized by strong heating due to the absorption of solar

soft x-rays and ultraviolet radiation (plus possibly other solar emissions), which dis-

sociate oxygen molecules and ionize nitrogen and oxygen; and (2) the exosphere, above

600 km, characterized by atoms and molecules which are ejected from the thermosphere

and either escape or return to the thermosphere without collision in most cases. Besides

the mentioned photodissociation and photoionization, significant processes in the ther-

mosphere are diffusion and thermal conduction. The diffusion results in the settling out

of the heavier constituents so that above 250 km the principal component is atomic oxygen

and above about 1600 km, atomic hydrogen or helium. The thermal conduction provides

the heat transport from the region of intense energy absorption below 200 km, necessary

for the "boiling up" of the atmosphere which results in the strong correlation of density

and solar activity at altitudes 500-700 km. Assuming solar heating below 140 km, dif-

fusive separation, hydrostatic equilibrium, and thermal conduction Jastrow and Kyle

(Reference 152) extrapolate an atmospheric model above 700 km. For the day maximum,

a hydrogen atmosphere of about 5 x 10 -21 gm/cm 3 density is reached at about 2100 km;

for the night minimum, a hydrogen atmosphere of 7 x 15 -21 gm/cm 3 is reached at 1400

km. The greatest theoretical difficulty is that such models continue to decrease rapidly
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in density from midnight to dawn, instead of decreasing slowly, as deduced from satel-

lites [(1) and (2) above]; the heating mechanism may be hydromagnetic waves, or the

explanation may be electromagnetic effects on the satellite.

The large population of charged particles makes the geomagnetic field significant in

determining latitudinal, and possibly longitudinal, variations in atmospheric density, par-

ticularly by channeling charged solar particles into the auroral zones around the magnetic

poles. That little density variation with latitude (6) has been noticed is mainly the con-

sequence of there being no satellite combining an inclination above 51 ° and a perigee

height above 300 km.

In view of the difficulties obtaining a satisfactory theoretical explanation of the main

features of atmospheric density, little work has been done on the characteristics of the

short term irregularities to be expected. The spectral density (Equation 106) and the lag

of only two hours of the diurnal bulge behind the sun (2) indicate that the spectrum of

variations extends from periods of several days down to less than an hour. A similar

spectral variety is found in ionospheric sounding (Reference 160); however, at the rare-

fied altitudes of interest for geodetic satellites, it is not at all necessary that the neutral

atmosphere move with the plasma of changed particles causing the fluctuations in radio

response.

Orbital Accuracy Implications

There are two ways in which the atmosphere could distort or interfere with geodetic

deductions from satellite orbits: (1) the presence of variatmns which rotate with the

solid earth and hence give rise to a spectrum of orbital oscillations similar to that of

geodetic effects; (2) a "noise level" that distorts or even drowns out the geodetic effects

depending on the number and distribution Of observations used.

The principal distortion of type (1), the influence of the geomagnetic field, is be-

lieved to exist mainly on theoretical grounds. The long term observational evidence of

geomagnetic effect would be an oscillation of argument 2 _ due to density variation with

latitude. An analysis of such variation by Parkyn (Reference 137) finds an effect of oppo-

site sign from what is expected from a geomagnetic cause.

If the evidence of long period effect is so unsure, it can be safely assumed the effect

at the daily or semidaily frequency level is negligible.

Of the drag noise, frequencies below about h/2W will bc_ absorbed by the drag param-

eters of the reference orbit, where h is the number of drag parameters and W is the

duration covered by the reference orbit. For frequencies above this cutoff level of h/2w
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if it is assumed that the spectrum (Equation 106) applies to all frequencies, the root-

mean-square effect on the mean anomaly will be

Ifh _'¢_ c_}(l h) _ 0.01515 exp 4.8h_

_(M,d) : ± 1 (---W--I (107)
-- f_ d _ h 2
2_P2 /_w p2 (_-W)

where M is in radians and P in days. The "contamination index" (Reference 115) from

drag in determining the coefficient of a variation of expected rms amplitude _(c x) and

argument Axt (for example, a gravitational term) for a set of observations with index i

will be

E (
C(cx,D) = ± h/2w i (108)

2_P 2 e(Cx) _ e°s2Axti
i

!

For an undistorted determination of the coefficient e_ this contamination index should be

small compared to unity. Of the ways to make it small with a given orbit and observing

system, the only reliable one is to increase the length of record: that is, increase the

number of observations used. Increasing h or decreasing W increases the absorption of

some of the effect of c_ by the reference orbit parameters. _

t Since writing this review, there has come to our attention a study by Kochi and Staley

(Reference 161) which covers much of the subject matter of Paragraphs 7 and 8 of

this section.
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SECTION II

GEOMETRICAL CONSIDERATIONS AND ERROR ANALYSIS

1. GENERAL DISCUSSION

Thus far, the satellite orbit and the influences upon it have been discussed with only

slight mention of the manner of observation and of the reference frames in which both

orbit and observations are described. In this section the principal coordinate systems

(inertial, geodetic, and instrumental), the relations between them, and their precise defi-

nition and variations in time are described. These systems and their interrelations are

then used in the mathematical description of observations. Finally, the geometry is com-

bined with statistics of orbital variations and instrumental errors to estimate their effect

on the sought for results.

2. COORDINATE SYSTEMS

General Definitions and Notations

General notational schemes are given by References 1, 41 and 162. The notation of

this report follows Reference 41 with slight modifications.

As in Section I, r is a position vector for an origin at the earth's center of mass but

without specification as to the coordinate axes used. For origins other than geocentric,

we use a subscript: r T topocentric with origin at a point on the earth's surface; r s origin

at the satellite; r D origin that of a geodetic datum with a known bias with respect to the

earth's center of mass (as distinguished from an uncertainty with respect thereto). For

r referred to specific coordinate axis directions different symbols are used. Some of

these coordinate systems (all right-handed) are:

x (inertial): x = x 1 toward vernal equinox, z = x 3 toward north pole

q (orbital: ql toward perigee, q3 normal to orbit plane
!

u (geodetic): u = u 1 toward Greenwich meridian-equator intersection,

north pole

w : u 3 toward

55
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,_ (station or local): _2 horizontal northward in station meridian, _3 toward local

zenith

a : a s station-satellite line, a 1 normal thereto in plane containing local vertical

P : r'3 station-satellite line, Pl normal thereto in satellite meridian

b : b 3 instrument axis, b 1 normal thereto in station meridian.

Refinements of these systems discussed on pages 58 through 60 are shown by an

overbar to indicate removal of periodic variations and an argument to indicate an epoch:

for example, _(to).

For rotation matrices use the symbol Bi(_) where i is the axis about which rotated

and _ is the angle rotated, a positive rotation being counterclockwise as viewed from the

positive end of the rotation axis toward the origin. The elements r_m of Bi(_ ) are:

j --- i (modulo 3) + 1,

rii = 1

rij = rji = rlk = rki = 0

r jj = rkk = + cos

rjk = + sin 8, rkj : - sin

k _ j (modulo 3) + 1_

(109)

Using these rules we have, for example, for the topocentric local coordinates of a

satellite referred to a station of geodetic coordinates Uo and local vertical directed

toward (¢,_):

!

_n
¢91

(110)

For the topocentric instrumental coordinates of a satellite with the camera axis directed

toward (%, 85 ) we have

b T = R 2 (S b -2)R3(ab-Tr) IR3(-_)[ll(-i ) R3(-_0)q - R3(-_)Uo]

= _bx["xqq- R3(-_)Uol

(ill)
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q = [:cos:][acosEe]sin : avfl--e 2 sin E

o o
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(112)

The second lines of Equations 110 and 111 give alternative abbreviated notation for

rotation matrices. In astronomy, the rotation matrix Ilxq is usually expressed differently:

often as coefficients which are functions of _, = sin (i/2) times trigonometric functions

of _ and _0 such as the orbital plane orientation functions of Musen (Reference 50), men-

tioned on page 27.

In Equation 110 it is to be emphasized that (¢,L) define a direction, and have no

necessary connection with position, defined by %. Of course, "o may be expressed in

geodetic coordinates (_,_,h), but throughout Sections H thr(mgh IV (_,,\) are to be

understood as direction angles such as the astronomical vertical of an altazimuth instru-

ment or the "electrical" vertical of a radio interferometric system (even if, as is some-

times the case, arbitrary corrections are applied to refer observations to an axis (¢, _)

numerically the same as the geodetic coordinates of the station on some datum).

In a vector equation such as Equation 110 and Equation 111 the orientation parame-

ters (¢,_) or (a, S) and the time _ will generally be known by means separate of ob-

servations of a satellite to a much higher degree of accuracy than the orbital parame-

ters. Hence, for practical purposes, the differential of a local vector can be expressed

as

d,_ T : R_ [R3(_)dx- duo]. (113)

Then, for dx we have

i

d_ : q :-5 q'_-_o n

where, for example,

' o] ai
, di (114)

q" d_ : _q, dw

dq dq

3D 3f_ ill(- i) 113(- _)

- sin f_ - cos fl i1
= cos f_ - sin _2 Rl(-i ) R3(-w )

0 0

(115)
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and

dq ; d L aq/l-e20 sin E

COS E - e ,

-- _- e 2 sin E,

0

Cce de.

.sine ( 11-e cos E' -a 1 + 1-e cos E

a r_-e2 cos E a /1-e 2 sin E / cos E

1-e cos E ' \-1 - e cos E

0 0

da

dM

de _

(116)

I

i-a

A simpler form of Equation 114 due to Eekert and Brouwer (Reference 163 and Ref-

erence 12, pp. 82-83) is obtained by using differential rotations (_1,¢2,_3) around the

X, Y, and z-axes respectively instead of d_, di, dx. Then,

dl

I ! z -y

-_ - 0 x

-x 0

(117)

Time and the Precise Definition of Coordinates

Explanations of the various types of time and their relationships are given by

Clemence (References 164 and 165), Danjon (Reference 166, pp. 113-128), Veis (Refer-

ence 1), Rice (Reference 167), Gabbard (Reference 168), and each issue of the American

Ephemeris and Nautical Almanac. The applications of the various types of times in ce-

lestial geodesy are:

ET -- Ephemeris time, defined by the mean frequency of revolution of the earth around

the sun for the year 1900.0, is used for the computation of all orbits, as described in

Section I.

UT -- Universal time, defined by the frequency of rotation of the earth.
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UTO -- Instantaneous frequency about the instantaneous axis. UTO is obtained by ob-

servation of the frequency of rotation of the fixed stars with respect to the local

vertical at an observatory.

UT1 -- Instantaneous frequency about the mean axis with respect to the earth's crust

[defined by averaging over about six years (Reference 169)]. UT1 is required to

relate correctly observed directions to the equinox.

UT2 -- Mean frequency (defined by subtracting known seasonal variations of 0:03 ampli-

tude from UT1) about the mean axis, still contains secular and irregular variations

with respect to ET.

AT -- Atomic time, defined by the frequency of vibration of an atom, such as cesium, is

the most accurate frequency standard over durations up to some years; A.1, provided

by time series such as that of the U. S. Naval Observatory (Reference 170), is

essentially the same as ET with its reference longitude shifted so as to differ as

little as possible from UT.

The essential requirement is the relationships between times and coordinate systems

for the different data used: the satellite orbit, computed in ephemeris time, and re-

ferred to axes either fixed at an epoch within the duration covered by the ephemeris, or

uniformly rotating; and the observations, timed by signals referred to A.1 (or, prac-

tically, ET), and referring directions either to axes fixed with the earth or to a star

catalogue defined in terms of mean axes at a standard epoch such as 1950.0. Veis (Ref-

erence 1, pp. 97-100) adopts the following coordinate systems (all geocentric) to express

the necessary relationships; his notations are in capitals, and ours in the appropriate

modifications of the notation of page 55:

X = _(_): u 3 toward mean north pole, u x toward intersection of mean equator and

mean Greenwich meridian (re-emphasize: a direction, not a coordinate), corre-

sponding to UT2

¥ = _(t): u 3 toward mean north pole, u 1 toward intersection of mean equator and

instantaneous Greenwich meridian, corresponding to UT1

Z = _(t): x 3 toward the instantaneous direction with respect to the celestial sphere

of the mean (with respect to earth) polar axis, x1 toward the instantaneous vernal

equinox

= i(t): at the same instant, x 3 toward the mean (secularly changing) direction of

the mean polar axis, x I toward the mean (secularly changing) vernal equinox

W = i(to) : at a specified epoch, x 3 toward the mean direction of the mean polar

axis, x1 toward the mean vernal equinox.
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For therotationsbetweenthesesystems,wehave

u(t) = R2(x ) Rl(y ) _(t) "_

x(t) = R3(-_ ) g(t)

x(t) = R3(-_._ ) R2(Av ) RI(-Ae ) i(t)

i(t) = R3(-oJ ) R2(v ) R3(-K ) X(to) J

(118)

!

where x.y are the displacements (with respect to the earth's crust) of the instantaneous

from the mean north pole in the directions of Greenwich and 90°W, respectively (Refer-

ence 169, p. 349); _ is the instantaneous, or apparent, Greenwich Sidereal Time; A_, Av,

Ae are the nutations in right ascension, declination, and obliquity, respectively; (K +_) is

the precession in right ascension, to the first order -- _ is defined as the half in the plane

of the mean equator at t o and co is defined as the half in the plane of mean equator at t;

is the precession in declination. The values of x, y, _, A., and /_e are all small

enough that 1 may be substituted for cosines, arguments for sines, and 0 for products of

sines thereof in Equation 118. See also Reference 166, pp. 79-128.

Veis (Reference 1, pp. 102-105) also derives transformations between geodetic sys-

tems _ and ao for not only translation but also small orientation and scale differences.

The latter two seem unnecessary considerations since for celestial geodetic observations

terrestrial geodetic control only enters to give the translatory differences between track-

ing stations: orientation is obtained from the stars, the only conceivable difficulty therein

being obtaining an adequate aircraft for orientation of a radio interferometric system.

In 1903 ET and UT were equal, but now ET is 34 seconds fast with respect to UT.

Also, ET may gain as much as 1.5 seconds per year (or 5 x 10 "s) on UT so the difference

is easily perceptible in lunar mean motion but will not become geodetically significant

until length measurements in celestial geodesy approach a comparable accuracy.

The principal difficulty arising purely from definition of coordinate systems is that

of the precession and nutation changing the J2 secular effect, analyzed by Kozai (Refer-

ence 75), as discussed on page 30. The solution adopted by the Smithsonian Astrophysical

Observatory is to refer the inclination and the argument of perigee to the true equator of

date and to measure the longitude of the node from a departure point shifted from the

mean equinox of the date by an amount equal to the precession in right ascension since

1950.0 (Reference 171). Other possible coordinate systems are discussed by. Herrick

(Reference 172). Difficulties of an observational nature are discussed in Paragraph 1 of
Section III.
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Any observation can be expressed as a function of one of the vectors on pages 55-56.

For example, for photographic plate measurements _,_ (Reference 173, p. 281) with a

camera of focal length f (Reference 41)

= bcomp = bT =
!
b 3

comp

Nbb bT (119)

and for the observation equation using Equation 111

where

bob s + dbob s = bcomp + dbcorn p

= bcomp + Nbb Rb, [dx- R3(-O ) duo]

f 0 b2
t

l_bb : _ Nbb •

f fb2

b3 b3 2

(120)

(121)

Equation 120 is essentially the observation equation for simultaneous observations

of a celestial object from two or more points, the treatment of which has been developed

in detail by Vais_la" (References 174 and 175), Kukkam_Lki (Reference 176), Brown (Refer-

ences 177, 178, and 179), and Veis (Reference 1, pp. 115-135). Equation 120 differs from

those familiar in either astrometry (Reference 173, pp. 288-291, 404-411) or photo-

grammetry in that no plate constants, or dependencies, or orientation and scale parame-

ters, appear, since the bob s in Equation 120 is a consequence of the solution of this prob-

blem. Any error in orientation (or in timing) will be absorbed by the dbob _ in Equation

120. The greater part of dbob s should be due to imperfections of the object and to shimmer.

Since the object will normally be very close to the camera axis, Equations 119

through 122 can be written as referring to the vector p in place of b.

If observations are non-simultaneous, then Equation 120 refers to a satellite in orbit

and dx must be expressed in terms of differentials of all parameters of significant un-

certainty affecting the orbit: the six constants of integration, the parameters of the
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gravitationalfield, theatmosphericdensity,andtheshapefactor andarea-to-massratio
of thesatellite. From Equations114and116defineCxe as

C_e : Exq ; (122)

then

dx = Exe de (123)

where de is a vector comprising differential corrections to the six osculating elements.

We next have to express de in terms of the constants of integration -- usually elements

of an intermediary at epoch -- and the other parameters affecting the orbits in an equa-
tion such as

dJnm
de Jd '

: eo + Ceg + Cep cha2 i (124)
dKnm

In Equation 124, J will be a unit matrix plus one element

_M - 3n(t- to)

2.'0

(from Equation 6) for (t - t o) on the order of one day; if (t - to) is several days, then

there must be added nine additional elements

_(_, _, M)
w

_(i_, a o, eo)

to take into account the secular changes due to J2 expressed by Equation 58 (Reference

41). The term (:e_ is a matrix of the changes of the osculating elements due to changes

of the gravitational harmonic coefficients, obtained by using the disturbing function R m of

Equation 77 in Equation 29 and integrating as in Equation 83. The term Cep is a 6 × k

matrix of changes of the osculating elements at the time of observation with respect to

the accelerations n2i for i = 1 ..... k segments of the orbit from t o to the time of ob-

servation (an alternative to the n2i would be the coefficients of a power series expansion
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of n). The term 3M/3n2i would be obtained from Equation 101, thence _e/3n2i , 3oJ/3n2i ,

and _/3n2i from Equation 100 and _a/_3n2i from Equations 66 and 6. Any provision for

change of inclination due to drag would entail additional parameters for atmospheric ro-

tation or crosswind. Substituting Equation 124 in Equation 123 and substituting Equation

123 in Equation 120 gives the complete observation equation.

A process similar to Equations 123 and 124 could be carried out for an orbit numeri-

cally integrated in rectangular coordinates, developing 6 x 6 matrices

?[xi, ki]

? [Xi.l, Jii-1]

in Taylor series. To limit the Taylor series to terms of order i, the interval (t i - ti.1)

must be on the order of five minutes.

If the observed object is the moon, then dbob s on the left of Equation 120 includes

the correction of the center of the moon with respect to the edge of the moon which is

actually measured. The mathematics of the geodetic use of lunar photography has been

developed by Markowitz (References 180, 181), Potter (Reference 182), and Veis (Ref-

erence 1), the former two of whom use (a, 6) rather than (v,d) as the observations to be

adjusted. The alternative lunar method of occultations and eclipses, where the sunlight

or starlight is interrupted by the moon, could be treated similarly, with the light ray as

the b3, w axis or the line through the moon's center as the P3,T axis. The actual devel-

opment by Bonsdorff (Reference 183), Lambert (Reference 184), O'Keefe and Anderson

(Reference 104), and Henriksen (Reference 185), has been in terms of the Besselian fun-

damental plane (Reference 5, pp. 14-22 and Reference 148, pp. 368-403), equivalent to a

geocentric p coordinate system with the P3 axis fixed on the star, not on the moon. The

treatment by O'Keefe and Anderson (Reference 104) and Itenriksen (Reference 185) in-

cludes the refinement of the equal limb, or controlled, occultations: a pair observed a

short time apart from stations located so that the correction to the lunar radius is con-

sidered to be equal for the two stations. This situation results in a geometrically weak

solution in the P3 direction, in addition to the weakness in the x 3 direction due to the

low inclination of the moon's orbit, so du = 0 is assumed for one station and d43 = 0 for

the second to obtain, in effect, an equation for difference in latitude and longitude.

A final possibility of the photographic method is to place the camera in the satellite

and photograph geodetically controlled points on the ground. The strongest solution will

be to have photos overlapping in coverage, so the problem is essentially one of stereo-

triangulation, which has been most extensively developed by Schmid (Reference 186) and

Brown (Reference 177). The output of the stereotriangulation adjustment would be a set

of satellite positions on a geodetic datum uo with an associated covariance matrix, which

would be used as observations in equations analogous to Equation 120. Reference 41 also

has equations for theodolite observations.
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Therangingobservationequationis relatively simplesinceit canbewritten in terms
of inertial coordinates(References41and162):

+ dnXT [ : iXTl + 1 Id ]
lXTlobs obs comp IXTt xT " x- _3(-0) du o .

(125)

For range rate observations, the observation equation becomes more complicated

because of the contribution of the earth's rotation:

IXTlobs + dlXTIobs + XT • dx duo_IXTI comp _ 30

fd. - d.o . rd _-
J iT (126)

where b is the frequency of the earth's rotation. The terms within braces are small, of

second order. Hence, range rate observations are insensitive to du3, and it is necessary

to assume du 3 = 0 near the equator and d_ 3 = 0 elsewhere.

For di in terms of corrections to orbital elements de

where

and

3Bxq :3Rtq : el (127)
t i

na _ _ (128)
: V_- - e2 l-e cos E

0

C°

qe

m

sin E 1

2a (1-e cos E) , e - cos E, - _-sin 2E

N/l- e 2

2a cos E(1-e cos E) V_ - e 2 sin E(2e cos E-l),
cos E
- (cosE - e)

_ e2

0 0 0
m

n

na 0 0
(1-e cos E) 2'

0 na na sin E

(1 -e cos E) 3' (1-e cos E) 3

na
0

(l-e cos E) 2
m

(129)
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and ll.q and its derivatives are defined in Equations 111 and 115. Range rate theory has

been developed most extensively in connection with Doppler tracking by Guier and

Weiffenbach (References 187, 188, and 189) who work in terms of the central angle be-

tween the station and the satellite rather than i T . See also References 190, 191 and Ref-

erence 5, pp. 315-320.

For radio interferometrJc observations measuring direction cosines with respect to

a baseline of azimuth A, clockwise from north (Reference 41)

_obs + d_obs

(130)

where

N_ =
_I sinA+ _l_2Cos A cosA _i_2 sinA+ _2c°s A __3('ti sinA+-t 2cos A) (131)

3 P3 3 3

P3 P3 P3

and

[sin A cos A Ol (132)N_ = - P3 ' P3 "

Kahn (Reference 192) analyzos interferometric observations by considering the cone

which is the locus of points with the observed direction cosine _obs"

The general treatment of observations is also developed by Groves and Davis (Ref-

erence 193).

Range, Doppler, and interferometric observations are generally made by electronic

means and hence continuous, so that the fullest use entails considerable data. Ideally, an

estimate of all six orbital elements should be obtainable from each pass (Reference 189);

however, for some elements this determination would be so weak that the linear correc-

tion assumption of least squares would be wrong. Reference 41 suggests integrating over

segments of passes. For the results of each pass to be given proper weight, however,

careful attention to statistical aspects is necessary. This subject is discussed in Para-

graph 4 of this section.
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4. CONFIGURATION EVALUATION

All the differential corrections in Paragraph 3 of this section -- for example, dbobs,

duo, and dx (or de:) , dJnm, dKnm , tin2. i -- in a particular set of observation and condition

equations can be collected together in two large vectors: y, called corrections to ob-

servations, and z, called corrections to parameters. The essential difference between the

observations and parameters is that for the observations estimates of variance and co-

variance can be made from data outside that expressed by the observation equations,

while for the parameters they cannot. The set of observation and condition equations can

then be expressed in matrix form

Cy + Mz : f (133)

in which the elements of C and M are coefficients of the differential corrections in the

equations, and the elements of f are the differences between the observed and computed

quantities. Put the estimates of variance and covariance in a covariance matrix W and

solve by the generalized least squares criterion

yT W" 1 Y : Minimum. (134)

Solutions of the general case (Equations 133 and 134) for both y and z and their

covariance matrices are given in References 194, 195, and 179. In most problems in-

volving observations of satellites, a simpler special case can be applied, in which C is

an identity matrix I. The solution in this case is

z = [MT W-1M] -I MT W-1 f. (135)

The covariance matrix of the adjusted parameters is

, p,-,,]' [ ,]¥o - n-m " fTw-lf- zTMTw-I" (136)

where n is the number of equations and m is the number of parameters.

If it is desired to give weight to initial estimates of some of the z i's based on ob-

servations outside those in the adjustment, as expressed by a covariance matrix Vi, then

the solution becomes (Reference 115)

z = IMTw-IM _111 MTw-I• + v f. (137)
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For zi's which do not have weighted initial estimates, the corresponding rows and col-
-1

umns of Vi are all zeroes. The covariance matrix of the adjusted parameters is

r -'I MTw'IM + V f MTw- (138)
Vo- n-m+ r L

where r is the number of zi's with weighted initial estimates.

To evaluate a particular configuration of station locations, orbital specifications,

frequency of observations, duration of observations, type of observation, and uncertainty

of observations, we would want to estimate certain quantities in Vo, and find the configura-

tion which minimized these quantities within limits imposed by technological capability,

economic factors, etc. The Vo from Equation 136 and Equation 138 employs actual re-

siduals f to correct the magnitude of W; other defects in W, such as neglect of covariance,

remain uncorrected. In a beforehand estimate we are forced to assume that W is correct

in which case Vo becomes

MTW-IM + ¥it'1

The term W should express variance and covariance due to all phenomena affecting the

observations which are not accounted for by the reference model or by the corrections to

parameters z. The difficult part of W, neglect of which causes most least squares esti-

mates of uncertainty to be too low, is the off-diagonal elements which express covariance.

Covariance can be appreciable in a large number of observations due to systematic error,

such as timing. Covariance can also be appreciable due to neglected gravitational effects

and to drag. Following Equation 107 the drag-caused covariance in mean anomaly between

two times an interval At apart will be

Cov (Drag, At) 1 fh_ _2 (1_) (139)
- -- cos 2_f At df .

167r2 p4 f4
/2w

It is thus understandable that the only solutions for cowLriance matrices which have

been made have either taken into account only instrumental error (Reference 196) or have

been for particular configurations of simultaneous observations (References 178 and 197).

Brown (Reference 178) assumed: (1) ±2 micron plate measurement errors; (2) 600 mm

focal length; (3) five stations on North American Datum from the Aleutians to southern

California; (4) one station each on Hawaii and Midway; (5) satellite altitude about 1800 km;

(6) three groups of nine flashes each over an arc about 48 ° long; (7a) zero uncertainty in

NA.D positions; (7b) _6 m standard deviation in each coordinate, but zero covariance in

NAD positions. He obtained uncertainties less than _6 m in each coordinate of Midway

and Hawaii, under assumption (7a), less than ±8 m under assumption (7b).
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Qualitative and partially numerical analyses (References 1, 191, 198, 199, and 200),

however, generally favor use of orbital interpolation methods for transoceanic connec-

tions between geodetic datums of an order of accuracy _10 meters. The principal reason

is the desirability of observing the satellite at as close a range as possible, to limit the

degradation of accuracy which takes place with increased range. The minimum perigee

height to limit drag effects to negligible levels (assuming A/m about 0.05 cm2/gm) is gen-

erally concurred to be 700 to 1000 km. Other specifications generally concurred: inclina-

tions 55 ° to 70 ° to be accessible to most areas of interest; eccentricity less than 0.05 to

keep the satellite always within accurate observing range; timing within ±0.001 s. Newton

(Reference 201), considering geodetic use of Doppler observations, proposes a perigee

height on the order of 1500 km.

!

Specification of satellite orbits for analysis of the gravitational field has received

little discussion. A perigee height on the order of 700 to 1000 km is also desirable from

drag considerations, but a larger eccentricity is preferable: on the order of 0.2, enough

to give a well-defined perigee direction, but not so much as to require a semimajor axis

severely attenuating the effects of higher harmonics. The optimum inclination for a par-

ticular term could be deduced from the effect of its inclination factor F(i) (Equations 77

and 78) in the perturbing equations (Equation 29), but for general analysis all that can be

suggested is variety.
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SECTION III

ROCKET AND ARTIFICIAL SATELLITE TECHNIQUES

1. GENERAL

Vehicles

Some characteristics reasonably attainable in satellites less than 100 cm in diame-

ter and less than 100 kg in weight, such as are most likely to be available for geodetic

purposes (References 3, 198, 202, and 203) are:

(1) Power accumulation at a rate of 25 watts while in sunlight. The principal un-

certainty in this rate is that of the deterioration of solar cells due to radiation,

micrometeorities, etc., though experience with 1958 _2 indicates it is slow.

(2) Usable energy storage capacity of 106 watt-seconds. "Usable" means that only

a small percentage of the battery capacity is discharged, to insure long life, and

that there is about a 0.15 loss in charging, etc.

(3) Capacitors of 0.35 efficiency able to discharge 1500 watt-seconds within 0.001

second.

(4) A frequency standard of stability 10 -8 per day or 2 x 10 "1° per minute.

(5) Attitude sensing within one degree by horizon sensor or magnetic field sensor.

(6) Spin damping to less than one revolution per 40 minutes.

(7) Automatic, solar sensor, or command operation of switches.

(8) Area-to-mass ratio less than 0.08 cm2/gm.

These values are intended to be order-of-magnitude ideas only, since actual specifi-

cations are subject to sudden obsolescence.

Limitations on orbital specifications may exist for the inclination due to political or

safety considerations around the launch site. Use of a retrograde in place of a direct

orbit may reduce weight capacity by as much as 10 percent.

69
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Pertinent specifications of satelliteswhich have been used geodetically, or which are

of possible interest to geodesy (indirectly, in the case of the Echo satellite), are given

in Table 3.

Table 3

Specifications of Earth Satellites

Name

] Tracking Radio
L;:t;h Frequency Termination

Designation

10 ° cps Date

Maximum

Ratio Perigee Eccen-

Area-Mass h_ trlcit_
A/m Km e

cm2/gm

Sputnik II

(Down 1958

April 14)

Vanguard I

Vanguard II

Vanguard III

Explorer VII

Tiros I

ITransit IB

Sputnik IV

Transit IIA

NRL Radiation

Echo I

Courier IB

Tiros II

E

xplorer XI

ransit IV-A

iros III

1957

1958 fi2

1959 al

1959

1959 _1

1960 f12

1960 71

1960 72

1960 d

1960 nl

1960 772

1960 _1

1960 L2

1960 vl

1960 _r

1961 v

1961 _1

1961 fil

1957

Nov. 3

1958

Mar. 17

1959

Feb. 17

Sept. 18

Oct. 19

1960

April 1

April 13

April 13

May 15

June 22

June 22

Aug. 12

Aug. 12

Oct. 4

Nov. 23

1961

April 27

June 20

July 12

20,40

108

108

108

108

108

0

54,324;

162,216

20

54,324;

162,216

108

108

0

108

108

108

54,324;

162,216

108

1957 Nov. 10

1959 Mar. 16

1959 Dec. 12

1959 Dec. 5

1960 June 19

1960 July 12

1960 July 2

1961 April 18

1960 Dec.

Incli-

nation

1

0.07 230 0.07 65 °

O. 14

0.21

0.27

0.11

0.07

0.14

0.06

0.02

0.07

0.12

100.0

0.05

0.06

0.07

0.20

0.12

650 0.19

560 0.16

510 0.19

550 0.03

690 0.00

290 0.03

370 0.03

34 °

33 o

33 °

50 °

I

48 °

51 °

51 °

280 0.03 65 °

630 0.03 67 °

610 0.03 67 °

1450 0.02 47 °

1530 0.01 47 °

810 0.02 28 °

620 0.01 48 °

0.07

490 0.10 29 °

880 0.01 67 °

730 0.01 48 °

Comparatively inexpensive vehicles of potential value for geometrical geodetic pur-

poses are sounding rockets fired from balloons at 20-30 km altitude. One such rocket is

the U. S. Loki-II Rockoon which is able to carry a 4 kg payload to about 120 km altitude

(Reference 204, pp. 149-153); another is the Japanese Sigma rocket, designed to carry a

2.5 kg payload to about 100 km (Reference 204, pp. 283-286). Tests carried out thus far

of rocket flash photography (Reference 205) have, however, used ground-launched rockets,

for which there is better control of timing and trajectory.
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Timing

Accuracy of ± 10 meters positionally for satellites in orbit implies timing accuracy

of ± 0.001 s or better. Attainment of such accuracy requires use of recently developed

techniques in time service determinations and broadcasts and in station instrumentation,

(References 170, 203, and 206).

Starting in 1960, the essential control of time signals is by a system of about ten

cesium oscillators operated by the U. S. Naval Observatory and other national time serv-

ices. These oscillators monitor VLF time signals broadcast by Station NBA, Canal Zone

(18 kc/sec) and Station GBR, England (16 kc/sec) and HF signals broadcast by Station

MSF, England, Station WWV, United States, and Station WWVH, Hawaii. The probable

errors of the VLF stations as monitored in Washington are ± 0.4 milliseconds or less; of

the HF stations, less than + 1.0 milliseconds. These stations are also all coordinated to

transmit the same basic frequency within 10-10. It is expected that other national time

services will soon join this system (Reference 170).

This atomic time (A.1) is compared to ET through observations of the moon's orbit

by the Markowitz moon camera (Reference 181). The variations of UT with respect to

A.1 are observed as frequently as weather permits by the photographic zenith telescopes

(PZT's) and Danjon astrolabes, each of which have probable errors of about ± 0'.'06 in

latitude and ± 0:005 in time (internal; not including effect of star catalogue error: see

the following paragraph) for a single night's observations (Reference 169, pp. 334-340).

Corrections resulting from these observations are published within a few months by the

national times services and a year or more later in the Bulletin Horaire.

The time should be obtainable from VLF signals at distances up to about 8,000

km with an uncertainty of about 0.5 millisecond (Reference 170). To preserve this ac-

curacy for a day, a frequency standard which is stable to better than 10 -8 is necessary;

the quartz crystal control clocks currently used in the tracking of artificial satellites are

stable to better than 10 9 (Reference 206). There are other technical difficulties in the

timing system such as accuracy of the frequency divider and time delay in the receiver,

but probably the limitation on timing accuracy of any optical observation is in the optical

and mechanical parts -- in the operation of the shutter on a camera or of a gas discharge

lamp.

Orientation

Any type of non-simultaneous observations incorporating directions (that is, all types

except range and range-rate) depends upon accurate referral to the inertial coordinate

system. This referral is through the stars: directly in the case of photographic observa-

tions by stellar images on the same plate as the satellite image; or indirectly by
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conventionalastronomicpositionsin the caseof theodolitesandby trackinganaircraft
equippedwitha flashinglight in thecaseof radio interferometry. Hence,thesemethods
are, in turn, dependentupontheaccuracyof thestar catalogue.Thedensityof stellar
imagesneededfor photographs(or for accurateastronomiclatitude)is aboutoneper 2°x2°
square,or about10,000stars for uniformworld coverage.Fundamentalcataloguesthere-
fore donothavesufficientdensityandresort mustbehadto generalcatalogues.

Thebestgeneralcataloguesnowavailableare the Yale Zone Catalogue and Zweiter

Katalog der Astronomischen Gesellschaft (AGK2) for latitudes north of 30°S, and compila-

tions by the Royal Observatory, Capetown, South Africa, south of 30°S. The Yale Catalogue

and AGK2 are based on observations made mainly in the 1920's and 1930's with proper

motions dependent upon observations back to the mid-19th century. For epoch 1960, their

errors are on the order of ± 0:'2 to ± 0:'4 in each coordinate (Reference 207, p. 225). South

of 30°S the errors are larger because of the lack of 19th century observations, and in-

clude appreciable systematic variations due to poor positions of reference stars as well

as the random error due to proper motion.

Currently in preparation is AGK3R, a fundamental catalogue of more than 20,000 stars

of latitude north of 2°S, observed on meridian circles (forming the reference system

for AGK3). The anticipated mean error of AGK3R is + 0:'13 in each coordinate, and

± 0'.'008/year proper motion. Similar work is now underway for the southern hemisphere,

as also are new photographic catalogues. So by the late 1960's star positions of i 0'.'15

error and a density on the order of one per 1° x 1 ° square should be available; see Ref-

erence 207 for discussions of the problems involved, and Reference 197 for discussion of

the accuracy required for geodesy.

2. OPTICAL TECHNIQUES

Attenuation and Illumination

Light of wave length _. will be scattered by gas molecules in the atmosphere propor-

tionate to _,-4 and by water droplets independent of wave length. For the proportionate

transmission T of light from a source at altitude h* and zenith angle z with respect to

the observer at altitude ho

T = exp I- sec z 5_i [/_m Pm (h) + ffw Pw (h)] dh} : e ......
(140)

The molecular effect /3m pro(h) is given quite accurately by 0.00114_ -4, exp (-0.126h)

for h in kilometers and _ in microns (Reference 208), while data in Reference 208 suggest
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for the water effect flwPw(h) of clear air the much cruder estimate of 0.145 • exp(-0.65h).

For a source outside the atmosphere and an observer at sea level, v becomes

(0.0090_ -4 + 0.223).

Sunlight is the only means of illumination thus far applied extensively to satellites.

Applying Equation 140 to equations given by Reference 209, there is obtained for the re-

ceived flux SR :

from a diffusely reflecting sphere of radius b and albedo _ due to an incident flux s I

sR _ 2Kb2 [_i. _ + (_-_) ¢o_ _]
SI 3rrr 2

-_-(;_) sec z
; (141)

from a specularly reflecting sphere

SR - Kb2 e-"(X) sec • (142)
SI 4r 2

For sunlight in the vicinity of the earth, S I is about 1.2 x l0 s lumens/meters 2 and

about 0.52 microns, giving a r(0.52, _, 0) of 0.348. For a flux S in lumens/meters 2, the

corresponding stellar magnitude is -2.5 (logl0S + 5.65). Many results of value have been

obtained from solar-illuminated satellites (see Table 1), but satellites of high enough

perigee and small enough area-io-mass ratio to be of further geodetic value have only

been tracked consistently by the Baker-Nunn telescopes of the Smithsonian Astrophysical

Observatory. Under a favorable combination of perigee latitude and right ascension and

nodal longitude, they obtain as much as 200 observations in a 20-day period of Vanguard

satellites (h,, - 600 km, i - 33 °, e - 0.18) (Reference 112), concentrated, however, in

less than half of the orbit. Reference 1 discusses geometrical conditions of observability.

Methods of faceting or sectoring the surface of a satellite to give periodically brighter

reflections have been suggested by References 210 and 211.

Searchlight tracking was originally proposed by O'Keefe, and has been most carefully

examined by Hoffman (Reference 210). The essential requirement is "corner-cube"

retro-directive reflectors on the satellite, which are now made with only 2" dispersion.

An array of eight such reflectors with a filler of refractive index 1.7 on a satellite, four

each along two parallels, at 55 ° to the axis, will assure a reflection at least 0.72 maxi-

mum within 45 ° of satellite rotation with respect to the observer. For a light source of

luminous intensity I, the received flux SR from a retrodirective reflector of efficiency

K, dispersion ¢, and area h is

SR 4KA -2_ sec z (143)
I - _r 2 _2 e
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Allowing for diffraction, rotation of the satellite, imperfect pointing, light loss in the

glass filler of the reflector, aberrational shift, etc., K is about 0.4. The aberration due

to satellite motion coupled with the sharp decline in intensity from the central axis of the

searchlight [about exp (-4 x 10 "4 82) at angle 8] make atmospheric back-scatter negligible.

For I = 1.2 x 109 cp (two standard searchlights), z = 45 °, r = 2000 km, _ = 0.52 microns

and a camera of 500 mm aperture, equation 143 yields a required area per reflector on

the satellite of 100 cm 2. The method appears entirely feasible, the principal difficulty

probably being accurate prediction and aiming.

For a light source on the satellite of luminous intensity I, the received flux S_ is

SR 1

I r 2
e-_ _e_, (144)

Xenon discharge lamps have been developed to a high degree of reliability by Edgerton.

Specifications which appear feasible are an efficiency of about 35 lumens per watt, a flash

duration of about one millisecond, and a lifetime on the order of a million flashes (Refer-

ence 212). As specified on page 69, about 1500 watt-seconds per flash is reasonably

available. Assuming k is 0.52 microns and coverage over a hemisphere, the received

energy density will be about (8300/r 2 ) exp (-0.348 sec z) lumen-seconds/meters 2. Refer-

ence 198 has essentially the same figures for flash efficiency, a lower value of attenua-

tion _', and assumes full spherical coverage.

Assuming 0.6 of the orbit in sunlight and 0.6 of the orbit visible to stations in the

dark, the accumulation rate on page 69 would permit one 1500 watt-second flash per

three minutes and the energy storage capacity could save up 200 such flashes.

Equation 144 also applies to pyrotechnic flares, which can attain a peak luminous

intensity of about 20 million candle power, mostly in the near infrared (1.0 micron), and

an effective (half peak) duration of 3 to 5 milliseconds (References 178 and 197).

I

b.A
O1

Refraction and Aberration

To cover as much as possible of a satellite orbit, and to attain the strongest geom-

etry for simultaneous techniques, observations from any station should be made at all

zenith distances to the maximum at which accurate results are obtainable. The sole

limitation on accuracy is refraction, analyses of which with special reference to satel-

lites, rockets, etc., have been made by Veis (Reference 1), V_is_l_ (References 174 and

175) and Brown (References 179 and 213). The change 8z to be added to the observed

zenith distance z o is most succinctly expressed as an integral along the ray path from

the observed object s to the observer 0:
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'° ds J'_ n • V_ ,:Is (145)15z = - R - _z
s

where R is the radius of curvature of the ray path, _ is the refractive index, and n is

the unit vector normal to the ray path.

Equation 145 may be deduced from Shell's law, or by treating f_ds as an action in-

tegral (Equation 45) and applying Hamilton's principle (called Fermat's in optics). For

zenith distances less than 45c, assumption of a flat earth model and exponential decrease

with altitude of (_- 1) are adequate, but for greater zenith distances, formulas for solv-

ing the integral become complicated because of the necessity of using a spherical earth

model, and the necessity of expressing the manner of variation of _ and _ with s. Solu-

tions which have been applied to the latter problem, besides the exponential decrease with

altitude, are numerical integration using _ based on meteorological measurements, and

expression of the integral in the form

_ a i tan(2i+l)zo

i

where the a.'s are obtained by observation.
1

The case of greatest interest to celestial geodesy is the difference in refraction of

an object and its stellar back!,_round; Veis (Reference 1) obtains

,, tan z ( .0.1385 cOSZor )/_Sz = - 435.0 o 1 - e (146)
COS ZOF

which is adequate for z < 45'; References 1 and 179 give additional terms for z > 45 °

A form of refraction more troublesome than Equation 146 is irregular shimmer in the

immediate vicinity of the telescope, which will not be averaged out for brief flashes as it

is normally for long stellar exposures. Shimmer has been investigated by Nettleblad (Ref-

erence 214) and further examined by Brown (Reference 197) who find that the magnitude of
1

shimmer is approximately proportionate to sec_ z, that it may vary an order of magnitude

from night to night, and that it has a characteristic wave length on the order of 2 to 4 cm.

Hence, shimmer should decrease in effect with increase in aperture. Experimentally

determined angular shimmer effects for apertures greater than 100 mm fit the formula

k 1- (147)
o(o) = ± _- sec2z O.OS < k < 0.30

for a in radians and a in microns. This effect creates a point of diminishing returns of
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roughly f _ 100x/h-in theaccuracygainedbyincreasingthefocal lengthfor a given
aperture.

In additionto theusualstellar annualanddiurnal aberration,there is anaberra-
tionaleffect v/c dueto the componentv at right anglesto the line of sightof thesatel-
lite velocity relative to theearth,whichhasa magnitudeof a coupleof secondsarc; see
Reference1. Thisanglemustbedoubledin computingthedisplacementof a searchlight
with respectto a telescope,to allow for theoutgoingaswell asthereturn light.

I

p.a
cJ1

Theodolites

Rather elaborate photo-recording cinetheodolites have been developed for aircraft

and missile tracking, such as the Askania and the Contraves (Reference 3). Although an

accuracy of ± 20" for a single frame is stated, theodolites do not seem capable of geodetic

accuracy for satellite tracking because, in addition to sharing the timing difficulties of

cameras, they require the full refraction correction of Equation 145, entailing computa-

tion of _o from temperature and humidity observations, etc., by Equation 157.

Cameras

For a film requiring an energy density Ex, a film and lens combination of resolution

characterized by "spot" diameter ax, in a camera of aperture a and focal length f,

photographing an object with an angular rate of travel with respect to the camera of _,

and exposure time At, the required flux SR is

2
_a x + 4a x f_oAt

Ex. (148)S R =
7Ta 2 At

The value of E x is typically 0.004 lumens-seconds/meters 2 (or ASA 250) to give sufficient

contrast above film fog, and a x ranges from 18 to 30 microns. For a tracking camera, the

second term in the numerator of Equation 148 becomes 0; for a fixed camera photographing

a moving, continually illuminated object, the first term in the numerator becomes negligible.

The design of the Baker-Nunn telescope, a tracking camera with a Schmidt-type opti-

cal system, is described in detail by Henize (References 215 and 216). It is capable of

tracking either a satellite or the stars (including oscillating between them), has an aper-

ture of 500 mm, a focal length of 500 mm, and yields images of 20 to 30 microns diame-

ter. The camera has a spherical focal surface and uses 56 mm film. The accuracy of
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the camera-film-plate measurement system (using a Mann comparator) is _ I" to :i2"

(+2.5 to =L5microns) for stellar images (Reference 217). The accuracy has not been tested

for satellite images, since the cameras have never been used in simultaneous observa-

tions; however, a preliminary estimate is • 6" (Reference 218). The timing accuracy de-

pends upon the simultaneity of a gas-discharge lamp illuminated photo of a slave clock of

the crystal-controlled system and of the center point of the telescope photo frame defined

by a sweep shutter, in addition to the factors described on page 71. Using HF time

services, the times obtained are believed to be trustworthy to within I0 milliseconds,

and some to within 2 milliseconds (Reference 219); there should be some improvement

using VLF time signals.

The system of twelve Baker-Nunn telescopes operated by the Smithsonian Institution

Astrophysical Observatory aver34._e 1200 successful observalions per month (Reference

220). These observations are published in the series Research in Space Sciences_ Special

Reports, first in preliminary form and later in precise form.

Markowitz (Reference 221) h:_s designed and constructed a camera system which

simultaneously tracks the satellile and the stars by passing the satellite image through a

rotating glass plate 13 mm thick. Aperture of the camera is 178 mm, and focal length

1015 mm; position measurement accuracy is ± 5", and timin_ accuracy _0._002.

The advantage of the tracking cameras (References 215 and 221) is lost if the satel-

lite image is a flash rather than continuous, since the full effect of any tracking irreg-

ularity would be felt. In such cases stationary observations would have to be made and

the time measured either by a simultaneous radio signal or by photoelectric cell (Ref-

erence 198).

Several fixed camera systems for satellite observation have been developed: the

ballistic cameras (References 178, 197, and 222), aperture 117 mm and focal length

304 ram; modified aerial reconnaissance cameras (Reference 205), aperture 203 mm,

focal length 1015 mm; and an especially constructed camera (Reference 223), aperture

145 mm, focal length 910 mm. All of these cameras possess the advantages, relative to

the Baker-Nunn telescope, of using glass plates rather than film, and of being mobile;

they have the disadvantage of being fixed, having a small aperture, and requiring a much

more intense source. For this reason, as well as to overcome shimmer and increase

angular accuracy, a larger ballistic camera of aperture 300 ram, focal length 1200 mm

is proposed (Reference 197). The timing accuracy of the ballistic cameras and modified

aerial cameras is on the order of :_ 0._010, which is amply accurate for stellar orientation

and for simultaneous observation of a flare or satellite flash. The camera of Hewitt (Ref-

erence 223) has an estimated timing accuracy of _0_001 by measuring the passage of the

disc shutter with a photoelectric cell in coordination with the flash lamp illuminated photo

of a clock.
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The plate measurement accuracy of the ballistic cameras for flare images has been

well confirmed as ± 3 microns standard deviation by simultaneous observations in redun-

dant geometrical configurations (References 178, 197, and 224).

Several proposals have been made for simultaneous observations of rocket flashes

against a stellar background (References 174, 176, 178, 197, 205, 225, and 226). Tests

actually carried out include: (1) flares on a balloon at 15-20 km altitude observed by re-

flecting telescopes of 689 and 1,031 mm focal length at Helsinki and Turku (153 km apart)

with a deduced rms error of direction of ± 2" (Reference 175); and (2) flares at more than

700 km altitude observed by three ballistic cameras located on Bermuda and on the east

coast of the United States from which an rms error of position of _ 18 m for Bermuda was

deduced (Reference 224).

In summary, camera techniques can attain the • 10 meters positional accuracy by non-

simultaneous techniques, mentioned in Paragraph 4 of Section II, as well as obtaining

more detailed gravity information, if timing errors are reduced to i 0._001: probably

through use of a radio signal broadcast by the satellite simultaneous with a flash. An

alternative might be a flash control by closely monitored clock on the satellite.

An optical technique of considerable possibilitiesboth in sensitivityand accuracy is

photoelectric tracking (Reference 227), in which there is timed the lightfrom a satellite

or star as itcrosses a slit.

I

O1

O1

Satellite Photogrammetry

As has occurred in the conventional application of the two techniques, it may be ex-

pected that eventually satellite photogrammetry will take over many of the tasks of sat-

ellite geodesy. So far, the subject has received very little discussion in print (References

228 and 229).

Two essentials of such a system are:

(1)

(2)

A camera of high geometric fidelity, and

Wide angle coverage to limit the number of stereoscopic models to bridge

between existing geodetic control.

A combination of (1) and (2) will necessarily result in low resolution, thus requiring:

(3) A means of accurately matching low resolution photography to geodetic control.

A camera of high geometric fidelity further implies:

(4) Highly stable film, and
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(5) Recovery of film.

For strengthening the control of the photogrammetry, there is further needed:

(6) Orientation by a stellar camera to within 5", coordinated to within about

0_.01 with the ground camera, and

(7) An accurately computed orbit, with ground tracking.

Consideration of velocity and illumination further indicates:

(8) Image motion compensation.

A photogrammetric satellite will benefit greatly from the orbiting astronomical ob-

servatory (Reference 230) which has similar problems of stabilization, orientation,

dimensional stability under temperature changes, etc., in more acute form.
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3. RADIO TECHNIQUES

Any radio observation measurement depends upon the relation in phase between a

received signal and a reference standard of the same, or nearly the same, frequency.

Interferometry uses the difference in phase of signals from the same source received

at the same instant at two different antennas on the ground:

As¢ = ±(rl-r2) (149)
C

where _ is the frequency (radians/sec) in terms of which the phase difference is meas-

ured and c is the velocity of light.

Doppler uses the difference in rate of change of phase of the received signal and a

standard at the ground station:

5_ : Ai : ±÷. (150)
C

Range measurement uses the change in phase of a signal from the time it was trans-

mitted from the ground station to a transponder or reflector to the time it is received

back again:

_t ¢ : 2 _ r . (151)
c

The t index in Equation 151 denotes that it is a temporal phase difference, in distinction

from the spatial phase difference ZX¢ of Equation 149.
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AberrationaffectsEquations149,150,and151in that thesatellite or rocketposition
andvelocity changeduringthetime interval of travel of the signal,andsmall corrections
mustbeappliedto theseequationsto makethemrefer to the instantthesignalleavesthe
satellite or rocket.

Equations149through151imply constancyof c, whichconstancyoccursin a vacuum;
allowancemustbemadefor theeffectof the mediumthroughwhichthesignaltravels,
theseeffectsare discussedin thefollowingparagraph.

Environmental Effects on Propagation

are

The actual phase changes which take place upon propagation through the atmosphere

c dt _ds (153)

Ate = c }xds + .d (154)
up dow

where _ is the refractive index and the integrals are over the ray path.

The change in phase difference $A¢ of an interferometric system with a baseline of

length Ax due to the rotation 5_b of the wave front emanating from the source as it ar-

rives at the ground stations is

SA_P = _ Ax sin _b _ (155)
c

where ¢ is the angle between the baseline and the ray as it arrives at the baseline. The

mathematical expression for 8¢ is the negative of Equation 145. Radio interferGmetry

has additional complications beyond optical observations in that the refractive index at

the source and the horizontal gradients of the index may both be of appreciable effect.

The "wedge component" due to the horizontal gradients has received the most detailed

theoretical analysis in connection with radio astronomy (Reference 231). Application to

satellite signals is discussed in References 232 and 233.

In carrying out the differentiation with respect to time of the Doppler equation (Equa-

tion 153), the change of the upper limit of integration due to motion of the source must be
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considered.Theresult, applyingFermat's principle andassumingisotropyof _ (Refer-
ence234)is

_'_ = c ks ts " _" + _-d (156)

where t s is the unit vector tangent to the ray at the source. Usually, the refraction ef-

fects in this first term in Equation 156 will be larger than those of the second term, in

which the effects of irregularities are smoothed out by the integration.

For integration of the second term in Equation 156, or integration of the two integrals

in the range equation (Equation 154) (these integrals have only higher order differences)

there are the alternatives of using assumed values of _ or _z/St and numerically in-

tegrating by ray tracing methods, or of developing fpds or f(5/_/_t)ds analytically in

negative powers of _ (or f), as is done by Guier and Weiffenbach (References 187 and

188), and Davisson (Reference 235). The effectiveness of either of these procedures de-

pends upon the developments being largely in terms of one, or a few, parameters, the ef-

fect of which can thus be eliminated by using multiple frequencies. The feasibility of the

procedures depends upon the physical nature of the refractive index p, which is split into

two distinct parts.

(1) Tropospheric refraction is already familiar in geodesy through its effect on air-

borne electronic methods (Reference 236), expressed by a standard formula such as that

adopted by the I.U.G.G. (Reference 237):

(_-1) 106-- _--- (p-e) +_103"49 86.26( 1÷-- e5_8) (157)

in which air pressure p and water vapor pressure e are in mm of mercury and temper-

ature T in degrees Kelvin. Bean (Reference 238) discusses formulas for extrapolating

_(h) given the ground level value _o and obtains fromeightyear's of data over the United

States separate rules for the segments 0 to 1 km and 1 to 9 km, which represent _ within

10 -s. At 9 km altitude (_- 1) averages 105 x 10 -6 and varies over a range of only

8 x 10 -6 Above 9 km (_- 1) is representable within • 15 percent by Equation 158:

#-1 = 105 x 10 "6 exp [-0.142 (h-9)] , h > 9 kin. (158)

(2) Ionospheric refraction is dependent upon the electron density (Reference 160).

Thus,

1 1

(159)
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whereN is in electronsper cubiccentimeter, e and m are, respectively,thecharge
andmassof anelectron,and % is thedielectric constant.For frequencyin cyclesper
secondf : 2_, f > 108 cps, and N in electrons per cubic meter Equation 159 becomes

/_ = 1 40N 1 1.6 × 103N (160)
f2 w2

The electron density N is a function of the intensity of ionizing radiation, the at-

mospheric density, and the atmospheric chemical composition -- all three determine the

production rate of electrons and the latter two determine the destruction rate through

recombination. Assuming constant coefficients for the rates of these two processes,

equilibrium between the processes, ionizing radiation to come from the sun, and atmos-

pheric density to vary exponentially as in Equation 96, the Chapman model of electron

density is obtained (Reference 160):

1 1
N : Nmax cos'2X exp _ [l-z-e "z sec )¢] (161)

where z = (h-ho)/H, ho is the altitude at which Nmax occurs, and )¢ is the solar angle.

The angle _ is inconvenient to compute, the ionizing and recombination coefficients are

unsure, and the geomagnetic field influences the intensity of radiation, so a model (Equa-

tion 162) based on observations is usually applied:

1 [1-z-e "_] (162)
N = Nma x (h o, ¢, _, t) exp _-

The time t in Equation 162 is significant for the time of day, the time of year, and

the phases of the ll-year and 27-day solar cycles. The factor Nmax is obtained by set-

ting _ = 0 and using the observed fmax, the highest frequency reflected by the ionosphere

in Equation 162; h o is obtained from the time delay of this signal. Based on these iono-

sonde observations, monthly predicted fmax and h o for (_,_) and time of day and ll-

year sunspot cycle are published in the Basic Radio Propagation Predictions of the Na-

tional Bureau of Standards and in similar services of about twelve other countries.

The Chapman model (Equation 162) indicates that most of the electron content sig-

nificant for satellites at geodetically useful altitudes will be around and above h o. Elec-

tron content below h o (240 to 440 kin) has been well mapped by ionosonde; it can be ex-

pected that deviations from a simple model will be even greater above ho , so further

observations are desirable. With the advent of satellites and more powerful VHF and

UHF radar a variety of experimental results have been obtained, by such techniques as

rotation of polarization of satellite or lunar-reflected signals; differing Doppler shifts on

two frequencies, after Equation 156; frequency shift of back-scattered UHF radar; direct

sampling; etc. -- most of them either limited in coverage or uncertain in interpretation.

The principal properties of the F2 ho are described in standard texts (References 160

and 239); observations by new techniques above ho are in many papers such as those in-

cluded in reports of recent symposiums (References 240 and 241):

I

ol



83

(1) The world-wide and all-time average daily maximum for equatorial and tem-

perate Nma x is 2 x 1012 electrons/meter 3 with ho of 400 km.

v-4

(2)

(3)

(4)

With the ll-year sunspot cycle, there are variations of the annual average of

the daily maximum Nmax from 1 to 3 x 1012 electrons_/meter 3

There are irregular seasonal variations in Nm_,, mostly negatively correlated

with the solar latitude.

The average daily variations in equatorial and temperate Nma x and ]1o are

from about 2 x 1012 electrons/meter 3 at 2 p.m. and 400 km at 12-2 p.m. to

about 2.5x 1011 electrons/meter 3 at 5 a.m. and 240 km at 1-5 a.m., polar Nm. x

remain at about 2 x 1011 electrons/meter 3 at 400 km.

(5) Magnetic storms can cause an order of magnitude drop in Nma x and a rise in ho.

(6) Seasonal variations in the total (temperate) electron content for early afternoon

are on the order of 3 x 101_ electrons/meter 2 in summer and 6 x 1017 elec-

trons/meter 2 in winter.

i7) Day-to-day irregular variations in total electron content are on the order of

20 to 30 percent.

i8)

(9)

The regular daily variations of total electron content rise from a minimum just

before dawn to a maximum about 3 times as great in the early afternoon.

The ratio of electron content above ho to electron content below ho varies

from 1.5 to 5 in different experiments.

(10) The electron densities observed up to around 1000 km require a scale height H

on the order of 100 km to approximate the Chapman model (Equation 162).

ill) Throughout the ionosphere, there can exist "clouds" differing in electron den-

sity by as much as an order of magnitude, as little as 1 km in vertical extent

and rapidly moving.

For a satellite altitude of 1000 km and transmission frequency of 10 s cps, items (1)

and il0) indicate refractive effects of the order 10 -3 on interferometry and Doppler,

while item (6) indicates a refractive effect of order 10 -3 on range observations. Items

(5), i7), and (11) indicate thai variations with respect to any model will be a major fraction

of these total effects; hence, geodetic accuracy requires either multiple frequencies of

more than 10 scps, or single Jrequencies of more than 109 cps. [Another possibility

(Reference 235) is to obtain a refraction-corrected range on a single carrier frequency

by combining pulse, affected by group delay, and continuous wave, affected by phase delay,

technique s. ]
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Theionospherealso attenuatesradio signals;this attenuationis proportionateto f-2,
andis negligiblefor thefrequenciesin excessof 108cpsrequiredfrom refractive
considerations.

Interferometry

The Minitrack system (References 211, 242, 203, and 243) has three pairs of an-

tennas spaced respectively 500, 64, and 12 feet apart on a north-south line, and two pairs

of antennas spaced 500 and 64 feet apart on an east-west line, to give a fan-shaped recep-

tion pattern 100 degrees wide from north to south and 10 degrees wide from east to west.

The signals from a satellite received on a pair of antennas are mixed with the output of a

local oscillator and combined to form an audio frequency signal which is compared with

a reference signal to measure phase difference with a precision of 0.001 cycle, equivalent

at 108 mc/sec to geometrical angular precision of 4". The phase difference is recorded

in both analogue and digital form, with the time to an accuracy of about ft.001. The

system is calibrated by tracking, and photographing against the stellar background, an

aircraft carrying a flashing light. This calibration not only obtains the orientation with

respect to the inertial system, mentioned on page 71, but also obtains corrections for

misalignments and imperfections in the antennas and other elements of the system. These

corrections are expressed as polynomial coefficients in obtaining a smoothed solution for

the direction cosines (_.ra) with respect to the two baselines at the integral second of

time closest to the system meridian. The refraction correction is then applied to the

direction cosines:

_corr. = "_obs - _ = _obs + sin ¢$_b _, "_obs(l + /_o - _s) (163)

where _s is obtained from the propagation predictions (Equations 162 and 160) and _o

is obtained from Equation 157. Since an appreciable part of the ionospheric refractive

effect depends on the electron density along one line -- the satellite orbit -- the smoothed

solution acts to diminish the effects of irregular fluctuations in this quantity.

The instrumental accuracy of the Minitrack system at 108 megacycles per second

with a 500-foot baseline is estimated to be + 20", an appreciable part of which is slowly

varying error in orientation, as evidenced by the changes therein from one calibration to

the next (Reference 243). Transmitting satellites are observed an average of six times a

day by the network of 13 stations, which is being converted to 136 megacycles per second

frequency.

A simpler system, the Mark !-[ Minitrack (Reference 244), has only one pair of an-

tennas 1000 feet apart on each baseline and only a null-detection, rather than a phase

comparison, for signals in this pattern. Calibration of the Mark II Minitrack by radio



85

stars hasbeenattempted(Reference245),butwasnotadequate.Mark II Minitrack sta-
tionshavebeenoperatedonaboutsix islandsin the Pacific. Anotherinterferometric
systemis Microlock(Reference246}.

t_
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Doppler

The Transit system satellite (References 188, 202, and 247) transmits on four fre-

quencies: 54 and 324 megacycles controlled by one crystal oscillator and 162 and 216

megacycles controlled by another; each oscillator is stable to better than 10 -9 in 15

minutes. Upon receipt of the signals at the ground station, a reference frequency is sub-

tracted. The resulting audio signal is admitted once every two seconds into a preset

counter where the duration (< 1 _) of a specified number of cycles is measured by ob-

serving the number of 1-mc cycles that pass through and are registered on a digital

counter. At the end of a count, the signal is registered on an output tape with the time.

The same frequency standard, stable within 10 -9 in 15 minutes, provides the reference

frequency, the pulses controlling the gate to the counter, the 1-mc counting cycles, and

the clock providing the time; the frequency standard in turn is compared to the standard

time services.

The two received frequencies (i = 1, 2) are used to eliminate a parameter a(t)

from a pair of equations (compare with Equation 156):

fi a(t)

Afi(t ) = _-I/'TI + f_ (166)

All the data points for an entire pass are then used in the solution for an orbit (or,

alternatively, for station coordinates from a fixed orbit). In this solution, a correction

to frequency standard in the satellite is included as a separate unknown for each pass.

A better, but more elaborate, solution of the frequency standard problem would be to place

a transponder in the satellite, so that the signal received from the satellite is controlled

by the same frequency standard as the ground reference frequency.

Another Doppler system is Doploc (Reference 248).

Ranging

Secor (Reference 249) is a modulated continuous wave system. The ground :_tation

emits a signal with a carrier frequency of 421.2 mc modulated by four frequencies: fz,

fl - f2, fl - f3, and fl - f2 + f4 such that fl is c/29 meters (about 586 kc) and f2 is
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2 -4 x fl; f3 is 2 -8 × fl; and f4 is 2 -ll × fl" The satellite transponder returns a sig-

nal with a carrier frequency of 448.8 me and the same four modulation_ plus a signal of

carrier 224.4 me and the f i modulation only. An unambiguous phase shift is obtained by

measuring the phase shifts of all four modulation frequencies received from the satellite

with respect to standard frequencies maintained in the ground receiver. The phase preci-

sion of 0.001 cycle is equivalent to 10 -3 c/29 meters, or 0.5 meter range precision. The

discrepancy between the phase shifts obtained on the 224.4 mc and 448.8 me carriers is

used to obtain a first order corrected range r (and incidentally an estimate of total elec-

tron content between ground and satellite) by assuming in Equation 154 that, using Equa-

tion 160,

[ /s l(;) ,0_ds + #ds = 2 r + Artr ' f2 Nd (167)
up \ "_ / down down

where the tropospheric effect Artr ' is of the order of 3 meters by Equations 157 and 160.

Secor, like Minitrack and Transit, has provision for frequent readout of corrected

results with time, and for the monitoring of frequency and absolute time by the time serv-

ice VLF signals.

A geodetic Secor system of four ground stations will go into operation in 1961.

References 199 and 200 consider the use of a pulse, rather than a continuous wave,

ranging system, and Reference 235 considers a combination of the two techniques. Pulse

systems could apparently attain the same accuracy and maximum range for a given aver-

age power, but require heavier components to accommodate the much higher peak power

requirements.

Ranging systems are not as sensitive as Doppler to frequency stability, but do depend

much more on accurate knowledge of the velocity of light in vacuum, for which the pres-

ently accepted value is 299,792.5 ± 0.4 km/sec (Reference 237).

There appears to be no inherent limitation on radio tracking systems. The second-

order ionospheric effects we have neglected in this discussion are all slight; see Refer-

ences 200 and 235. So the questions affecting choice of a radio tracking system are cost

and engineering difficulty. Radio systems have the advantages over optical of all-weather

and daytime tracking, and require less power in the satellite than a flashing light of com-

parable range (for example, 0.2 watts standby and 27 watts operating for Secor with 6000

km maximum range).

A system now in development to obtain considerably increased accuracy in range,

range-rate, and directional measurements from fixed installations is Mistram (Refer-

ences 197 and 250).

!
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SECTION IV

LUNAR TECHNIQUES

1. LUNAR TOPOGRAPHY EFFECTS

The principal common difficulty of all lunar techniques is the relationship of points

on the moon's surface which are used in observations to the center of mass which appears

in the equations of lunar motion. An error in the position of such a point is expressible

as • (b 1, b2) in Equations 119 through 121, and thus has a comparable effect on the cor-

responding coordinates deduced for the observer's position. Hence, it is desirable to

map the features of lunar topography as accurately as possible, and, most important, to

reduce to a minimum systematic error so that accuracy of deduced geodetic positions

can be significantly improved by repeated observations using different topographic
features.

The zone of interest comprises those topographic features which may appear on the

limb at some position of libration: an area on each limb about 18 ° wide in selenographic

longitude. The published compilations, the maps of Hayn (Reference 251) and the profiles

of Weimer (Reference 252), are estimated to give errors on the order of 0:2 to 0:'3, equiv-

alent to 400 to 500 meters position. The improved compilation of Watts (References 253

and 254), due for publication late in 1961, is estimated to give rms errors of about • 0'.'07.

The improvement is due not only to a more elaborate measurement and control systems,

but also to the closer interval of lunar profiles: 503 were used to cover the entire pos-

sible range of combined librations in latitude and longitude. See Reference 5, pp. 59-78.

2. ECLIPSES

Eclipses were observed and studied extensively 1944-1954 for geodetic purposes by

both photographic and photoelectric methods. Most attempts were spoiled by poor weather

or equipment difficulties; the most successful was a connection in 1947 from Gold Coast

to Brazil by KukkamSki and Hirv¢)nen (Reference 255), for which an uncertainty of =L94

meters is estimated, including the error due to Hayn's charts. A comprehensive discus-

sion of eclipse methods is given by Berroth and Hofmann (R(,ference 5, pp. 147-242).

87
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3. OCCULTATIONS

Photoelectric observations of occultations, developed by O'Keefe, Henriksen, and

others (References 104, 185, 256 and 257, and Reference 5, pp. 243-267), have been car-

ried out extensively since 1950. A Cassegranian telescope of 480 cm focal length and 30

cm aperture is used. The occultation of a star by the moon is a very abrupt event; the

principal problem in timing this event is the signal-to-noise ratio of the starlight to the

light scattered from the nearby bright part of the moon. The solution employed is to use

a field stop which limits the field of view to 10" for light entering the photocell, as well

as a series of baffles in the telescope tube. The small field in turn necessitates accurate

mirrors and an ingenious guiding system. The photocell is an RCA IP21 photomultiplier,

which has a sensitivity of 10 "14 lumens at 25°C. Occultations of stars as small as 9th

magnitude are observed with 0."01 timing accuracy.

The effect of error in lunar topography is minimized by the controlled, or equal-

limb-line, method (mentioned in Paragraph 3 of Section II) in which the occultation is ob-

served from two points for which the starlight is cut off by the same lunar feature. This

method is effective because the variations in the lunar profile described in Paragraph 1

of this section are rather smooth, that is, there is a high correlation in the departures

from sphericity of the lunar surface. In calculating the location of points on the same

line, refraction must be taken into account.

The accuracy of the occultation technique indicated by the internal consistency of

redundant observations is of the order of ± 200 meters in relative position (Reference 257).

An adjusted solution is being carried out of a network of more than 48 observed occulta-

tion pairs in the Pacific (Reference 185).

4. LUNAR CAMERA

The lunar camera of Markowitz (Reference 181 and Reference 5, pp. 282-293), in op-

eration since 1952, has been installed at twenty observatories. It may be attached to re-

fracting telescopes of 20 cm or more aperture and 2 to 6 meters focal length. The moon's

image is intercepted by a 1.8 mm thick plane parallel plate filter of transmission factor

0.001. The rate of tilt of the plate holds the moon fixed relative to the stars. The epoch

of the observation is defined by parallelism of the filter plate and a fixed plate. Exposure

time is 10 to 20 seconds. Timing error is eliminated by reversing the camera.

In measuring the photo plate, about 10 stars and 30 points on the lunar limbs are used.

The probable error of a night's observation is about ± 0:'15 in each coordinate; since 100

nights a year is a typical program, systematic errors are much more significant. These

errors are in the telescopes and in the plate measuring engines. The former are calibrated
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bycomparingobservationsof thesamestellar field; the latter are estimatedto have
about0.1micron systematicerror. Markowitzestimatesabout• 0:'02error for a year's
observations(Reference180).
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5. RADAR RANGING

Since 1950, a continuously increasing program of radar studies of the moon has been

carried out by several installations. Those by Yaplee and associates (References 106,

107, and 108) have emphasized accuracy of range determination, using 10 cm and 21 cm

wave lengths on the 50-foot reflector of the Naval Research Laboratory over many months.

Precision of determination of the time of receipt of the reflected pulse is _ 2 x 10"6 sec-

onds, and the internal uncertainty of a night's range determination is ± 0.3 km. However,

the nature of the reflection from the moon, including the extent of the reflecting area, is

still uncertain. Furthermore, there is a monthly periodic variation in the residual of the

measured lunar distance with respect to that from orbital theory of about 4.0 km ampli-

tude, believed due to irregularities in the shape of the moon. The most recently published

result, allowing + 1 km for the moon's radius, is 384402 ± 1.2 km for the earth-moon dis-

tance (Reference 108).
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SECTION V

COMBINATION OF CELESTIAL AND TERRESTRIAL GEODESY

1. COORDINATE FORMS AND UNITS

The relationships between the various coordinate forms (References 1 and 39):

Rectan-
Geodetic gular

(v+h) cos Cg cos _ = x

(v+ h) cos Cg sin k = y

[(1-e2)v + h] sin ¢ = z

Spherical Ellipsoidal

= r cos ¢ cos k = Vp 2 + ,:2 V_ _ 0-2 cos k

: r cos ¢ sin k = V_p 2 + c 2 _ - a 2 sin

= r sin ¢ = pa
J

(168)

1

where the radius of curvature in the prime vertical v = a e (1 - e 2 sin _ Cg)- 3; e is the ec- 1

centricity and a e the equatorial radius. If the astronomically convenient choice c = a_J22

is made for the shape parameter of the ellipsoidal coordinates (page 22 of this report and

References 38 and 39), then the relationship to the geodetic coordinates is complicated by

the fact that geodetic coordinates are referred not to a gravitational equipotential, but to

a gravity equipotential; that is, the rotational potential of the earth must be taken into

account. The most convenient intermediaries become the parameters of the gravitational

field, _ = kM and the J2n. Lambert (References 258, 259), Cook (Reference 260), and

Cohen (Reference 261) have developed the necessary formulas for the external potential

of a rotating ellipsoid; the leading terms are:

3 15 ]kM = a2g e 1 + _ [] - f - _ mf + O(f 3)

2(1) ,( 3 2)
4 f (Tf - Sin) + O(f3)J4 - 35

J6 : O(f3)

o(f3)

> (169)

where ge is the acceleration of gravity at the equator; m is the ratio of centrifugal

force at the equator to ge; that is, (_)_ aJg_, and the flattening f = 1 - _- e 2.
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Several additional formulas pertaining to a rotating ellipsoid and its external field are

given in References 258, 261, 260 (in which the definition of m differs from that used

here) and Reference 262, which gives the external field in the form of the components of

acceleration, not of the potential.

For departures from the rotating ellipsoidal model defined by Equation 169 expressed

in terms of gravitational acceleration Ag by (Anm, Bnm) or geoid height by (Cnm, Dnm):

rl rl [c° lAnm aege (170)Jnm - a) O(f3) O(f3)- + - + .

LK°oj kM (n - 1) LBnmJ kM DnmJ

It is convenient to express the gravitational field in terms of normalized harmonics,

because then coefficients of the same degree n can be directly compared, and also hap-

pen to be 0(1) for (Anm, 13nm) in milligals (cm x 10-3/sec 2) for n < 25 (Reference 111):

rq[ (n +m)' FA,,:]
LlL.,mj (n-m)' (2,,+ 1),< LB,.,mJ

(171)

where Ko = 1 and Km = 2 for m _ 0.

Refinements of definition in comparing celestial and terrestrial determinations of

the gravitationM field have been discussed by Cook (Reference 263).

I
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2. COMPARISON OF OBSERVATIONAL RESULTS

A comparison of the gravitational (ffnm' Knm) deduced from satellite motions with

those obtained from terrestrial gravimetry is complicated by the different methods em-

ployed by investigators of the latter to solve the statistical problem of determining har-

monic coefficients pertaining to the whole earth from observations covering only a minor

fraction thereof. The problem exists because the long wave variations expressed by the

low degree harmonics constitute a very minor part of the total gravity anomaly Ag meas-

ured by a gravity meter at the earth's surface: the 39 terms of degrees n = 2 through 5

are estimated to account for less than 8 percent of the total anomalous variance _2(Ag)

(Reference 111). Further, the distribution of observations is affected by the topography,

which is correlated (to an extent in dispute) with the gravity anomalies. So there is both

a high noise level and a bias with which to contend. All methods of treatment concur in

correcting gravity anomalies for correlation with topography to estimate the mean anom-

alies for limited areas; they also concur in that the function to be treated is not g, the

observed quantity, but Ag, the discrepancy of observation from an ellipsoidal model. The

treatment beyond the formation of mean anomalies for limited areas can be characterized

by two extremes:



93

(1) Determine the gravitational coefficients (Anm, Bnm ) by least squares fitto the

estimated anomalies for areas for which they are available, and disregard areas

without observations.

u_

,-4
,-=4

(2) Extrapolate gravity anomaly estimates from areas with observations to areas

without to the point where the anomaly estimate can practically be assumed zero

or a function of the topography (by either statistical correlation or assumed

isostatic compensation; Reference 264 investigates combining these methods).

The harmonic coefficients (hnm, Bn_) then become merely the transform of the

spatial representation, computed by numerical integration.

Of the principal investigations, Jeffreys (Reference 110), Heiskanen and Uotila (Ref-

erence 265) and Zhongolovich for degrees two and three (Reference 266) incline toward

method (1); while Kaula (Reference 111), Uotila (quoted in Reference 267) and Zhongolovich

for degrees four through eight (Reference 266) incline toward method (2). Of the two

methods, (1) yields the larger coefficients, and generally has the greatest amplitudes in

the areas with the fewest observations. As contended by Reference 111, with incomplete

information the most probable estimates of small departures from an equilibrium model

should have a lesser amplitude than the true departures. However, the estimates by

method (2), whether statistical or isostatic, should be of ewm lesser amplitude than the

most probable estimates, because the step-by-step extrapolation procedure implicitly

assumes that the probabilistic relationships for gravity anomalies a distance s apart

can be expressed in the form exp (-Piis) . There is no physical reason why gravity

anomaly correlation should be expressible by such a form, and, in fact, the magnitude of

the low degree harmonics inferred from satellite orbits and from autocovariance analysis

indicates that such-an extrapolation rule, if fitted to data for short distances on the order

of 1 °, should give appreciable underestimates for distances greater than 10 °. Even greater

underestimates are obtained using topography alone.

The comparison of celestial and terrestrial estimates is set forth in Table 4, includ-

ing estimated orders of magnitude based on autocovariance analysis of terrestrial gravi-

metry (Reference 111), and coefficients based on the assumption of perfect isostatic com-

pensation at a depth of 30 km.

For comparison of celestial and terrestrial determinations of kM, there is needed a

terrestrial estimate of scale. Here there is less doubt as to the data to be considered,

these being one determination published based on much more data than any other, that of

Mrs. Fischer (Reference 268) using astrogeodetic heights covering 19 percent of the earth

(in 10 ° x 10 ° square units): a e = 6378166 meters. Assuming _(ae) = ±21 meters and

using a ge of 978.0307 _ 0.000027 x 1014 m3/sec 2, kM = 3.986036 ± 0.000027 x 10 TM ma/sec _

is obtained, which does not agree with the celestially derived value on page 40 using

Rabe's _M/_E, but does with that using Delano's value.
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Table 4

Comparison of Celestial and Terrestriat Estimates

of GravitationM Coefficients

Source get
cm/sec 2 J2 x 106 Ja × 106 J4 x 106 J5 x 10 6 J22 x 106 K22 × 106

Celestial (see 1082.3 -2.3 -1.8 -0.3 -0.5 +2.0

pages 39, 41) ±0.2 _0.1 ±0.2 _+0.2

Jeffreys 978.038 1093.2 -4.2

(Reference 110) ±5.0 ±1.5

Heiskanen and 978.037 1090.6 -3.4 +0.7

Uotila

(Reference 265)

Zhongolovich 978.044 1095.0 -4.3 -3.0 -0.7 -5, 7 +1.6

(Reference 266) ±4.3

Kaula 978.031 1087.0 -0.2 -3.0 + 1.7 -0.5 +0.4

(Reference 111) _1.3 ±0.9 ±0.6 ±0.7 ±0.7

Uotila (quoted in -0.7 -2.2 +0.7

Reference 267)

Magnitude expected ±3. ±2. ±1. +1. ±1.

from autocovariance

Topography and +0.20 -0.33 +0.59 +0.17 +0.02

perfect isostasy

Including -0.013 cm/sec 2 absolute correction to Potsdam System.

!

The astro-geodetic geoid data have not been combined with gravimetry to make a

complete determination of the geoid based solely on terrestrial data, but a combination

has been made by Kaula (Reference 269) of all the astro-geodetic data in Reference 268,

the gravimetry in Reference 111 plus Reference 266, and the secular and long-period

satellite motions of satellites 1957 /3 (Reference 94) and 1958 f12 (Reference 87), to deter-

mine ellipsoid parameters, datum shifts, and the 76 possible gravitational coefficients up

to nm = 88. A generalization of least squares taking into account correlation was used,

with the variances and covariances of the gravimetric and astro-geodetic data estimated

from the autocovariance analysis in Reference 111 and the variances of the satellite mo-

tions taken from References 94 and 87. The resulting quadratic sum yT W"1 y was 44 per-

cent higher than expected on the assumption of normally distributed errors, but this re-

sult is not too disappointing considering the approximations involved in W. The principal

results, after increasing standard deviations in accord with the obtained yV W-I y: an

equatorial radius of 6378163 ± 21 meters; a flattening of 1/298.24 ± 0.01; an equatorial

gravity of 978030.7 _ 1.2 milligals (incorporating -12.9 milligals correetion to the Potsdam

system for absolute g); datum shifts (with three-dimensional standard deviation) for the

Americas system (± 35 m), Europe-Africa-Siberia-India system (e 38 m), and Japan-
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Korea-Manchuriasystem(±68m); 76coefficientsin the sphericalharmonicexpression
of thegravity field upto nm= 88with a meanstandarderror of about±0.7milligals for
the68coefficientswith m_ 0; world-widegeoidheightswith standarderror ranging
from ±10m to _22m.
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SECTION VI

GEOPHYSICAL IMPLICATIONS

As can be seen by comparing the first and last lines in Table 4, the gravitational

coefficients obtained from satellite motions are appreciably larger than expected on the

assumption that isostasy prevails for larger scale features, thus supporting the infer-

ences from terrestrial data of Jeffreys (Reference 110) rather than those of Heiskanen

and Vening-Meinesz (Reference 270). The more accurate value of J2 obtained from sat-

ellites enables the extension of the last line of Table 4 to include the J2 column, because,

as O'Keefe (References 107 and 271), and Henriksen (Reference 272) have pointed out, an

accurate value of the polar moment of inertia is now obtainable. Thus

Mo:
(172)

where C and A are the moments of inertia about polar and equatorial axes, respectively.

We have from the theory of a rotating fluid (Reference 110, p. 151):

Ma_ = _ - 5- _-" - + O(f2) "
(173)

The value 1/305.3 is obtained for ff from ._M/_E = 1/81.375 (Reference 102) and the rate

of precession of the earth's axis (Reference 110, p. 152); using it with J2 = 1.0823 x 10 -3

and m = 1/288.4 yields f = 1/300.3. If second order terms are included, f becomes

1/299.8 (Reference 271), from which, by Equation 169, we get a "hydrostatic" J2 of

1.0711 x 10 -3 and a J4 of -2.95 x 10 -6 , which is appropriately subtracted from the ob-

servational estimates of :/4 in Table 4 before comparing them with the isostatic figure
in the last row.

The difference AJ2 between the observed J2 of 1.0823 x 10 -a and the hydrostatic

J2 of 1.0711 X 10"3 is equivalent to a lag of 10 million years in adjustment of the figure

to the decelerating rotation at the present rate of 5 x 10" 22 sec- 2, estimated by Munk and

MacDonald (Reference 273). However, Baussus (Reference 264) suggests AJ2 can be
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explainedby consideringthermal, aswell as mechanical,equilibriumof a fluid under
latitudinalvariation of temperature.

Theearth's responseto rotationcanalsobe expressedin terms of the Lovenum-
bers: k, the ratio of themass-shiftpotential U2Gto therotational U2R;and h, theratio
of theactualsurfacerise to therise of a zerodensityfluid in responseto U2r (Refer-
ence119,pp. 24-28andReference274). Thus,

2aef P2

2gef 2f
k - U2G 332_ ,_ 2f_ 1; h - 3 _- = (174)

U2R ae3 (_) 2 m U2 R ae(b)2 m

go

I

C_

The ratio k/h _ (1 -m/2f) = 0.48 obtained from Equation 174 is about the same value as

the k/h obtained from various theoretical models of an elastic earth (Reference 274);

this agreement does not seem to signify much more than that the same parts of the earth

are participating in both responses.

Most discussions (References 271, 273, and 275) of possible sources of the large

AJ2 and J3 found from satellite motions conclude that it is impossible to explain

them by variations associated with the crust; (the same conclusion applies to the

J22, K22 given in Table 4: normalized, 322 is -0.8 x 10-°; I(22 is +3.1 x 10"6; and

AJ 2 is + 5.0 x 10"°). The necessary density anomalies must be in the mantle. Thermal

history considerations and the Gutenberg low-velocity layer in the 100 km just below the

crust further suggest that the density anomalies are rather deep in the mantle. The fair

degree of correlation of the long wave features of the gravity field with the geomagnetic

field and core depths from seismology, noted by Vogel (Reference 276), even suggests a

source in or near the core. However, the density anomalies which would be needed in the

core to explain the observed gravity field are several orders of magnitude greater than

those needed for the convection to maintain the geomagnetic dynamo (Reference 277).

Furthermore, if the density anomalies are deep, then in the corresponding gravity anom-

alies there should be a rapid decline in amplitude, or degree variance, with increasing

degree n (equivalent to decreasing wave length). For example, if we assume a distribu-

tion of density anomalies in the form of equal degree variances _2 (_p) on a surface at

depth 1000km, thenthe sum _%2(Ag) for n = 3, 4, 5, 6wouldbe about six times as

great as for n = 9, 10, 11, 12;°at 500 km, the ratio would be slightly more than 2.0. In

the estimates of these sums from autocovariance of gravimetry (Reference 111), the ratio

is about 1.7, the difference of which from the ratio for 500 km depth could be well ex-

plained by crustal variations.

Density anomalies are most closely tied to the inelastic properties, which act to re-

duce the anomalies. Use of the viscosity of 10 22 poises, deduced from postglacial uplift,

in the theories of Vening-Meinesz (Reference 270) for plastic readjustment of the crust
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(Reference 271) and for convective flow in the mantle (Reference 278) leads to unreason-

ably high rates of response; the material of the mantle must have a considerably greater

stiffness for the observed AJ2, 3 3, etc., to exist. The simplest conclusion is that the

density anomalies have existed in their present form ever since the mantle was formed.

However, this conclusion is difficult to reconcile with laboratory observations of the yield-

ing properties of rock (Reference 279), or with the paleomagnetic and paleoclimatic evi-

dence of polar wandering (Reference 119, pp. 250-285 and Reference 273). Munk and

MacDonald (Reference 273) suggest that evidence of adjustment to polar movement would

be that the gravity anomaly coefficients (Anm, Bn_) are systematically smaller for m odd

than for m even; this is not shown by the 72 (normalized) coefficients of degrees 3 through

8 in Reference 269, for which the rms magnitudes _(An_,, [_n_,) are =_0.81 mgal for m even,

±0.98 mgal for m odd.

The gravitational variations obtained from satellite motions are significant indicators

of some present and past properties of the earth's interior, particularly in that they ne-

cessitate certain minimums in tbe shearing stresses in the mantle. However, the most

they can contribute at present is to confirm Jeffreys' estimate that these shearing

stresses are at least 1.5 x 108 dynes (Reference 110, p. 210). Further contribution to

the understanding of the interior and its evolution depend upon the solution of what can be

summarized as two problems (Reference 280): (1) the rheological equations of state ex-

pressing the mechanical properties of rocks for temperatures, pressures, and durations

in excess of those attainable in the laboratory; and (2) a mathematical continuous field

theory adequate to express the energy and matter relationships in the interior on a geo-

logical time scale, distinguishing the significant from the insignificant and the probable

from the improbable.
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